ALGEBRAIC GEOMETRY: HOMEWORK 10

This homework is due on Friday October 25 by 5pm.
Let $V=k[X, Y, Z]_{d}$, the vector space of homogeneous polynomials in three variables of degree d. Let $\Delta \subset \mathbb{P} V$ be the set F that define singular curves (to be defined more precisely soon). In this sequence of exercises, we will prove that Δ is a closed subvariety, irreducible of codimension 1.
(1) Prove the identity ("Euler identity"):

$$
d \cdot F=X \frac{\partial F}{\partial X}+Y \frac{\partial F}{\partial Y}+Z \frac{\partial F}{\partial Z}
$$

Definition. We say that F is singular at p if F and all three partials of F vanish at p. Let $\Delta \subset \mathbb{P} V$ be the set of F that are singular somewhere.
(2) Let $D \subset \mathbb{P} V \times \mathbb{P}^{2}$ be the set of (F, p) such that F is singular at p. Show that D is a closed subvariety. Using the map $D \rightarrow \mathbb{P}^{2}$, prove that D is irreducible and find its dimension.
(3) Using the map $D \rightarrow \mathbb{P} V$, prove that Δ is a closed subvariety, and is irreducible of codimension 1.
(4) Does the map $D \rightarrow \mathbb{P} V$ have any positive dimensional fibers?
(5) (Not to be turned in). Since Δ is irreducible of codimension 1, it is given by the vanishing of one homogeneous polynomial on $\mathbb{P} V$. What is the degree of this polynomial?

Remark. The hypersurface $\Delta \subset \mathbb{P V}$ is called the discriminant hypersurface.
Remark. Working with three variables X, Y, Z is not important; everything works with n variables.

