ALGEBRAIC GEOMETRY: HOMEWORK 9

This homework is due on Friday October 18 by 5pm. Feel free to use the principal ideal theorem and its consequences proved in class.
(1) Prove that \mathbb{P}^{2} and $\mathbb{P}^{1} \times \mathbb{P}^{1}$ are not isomorphic to each other. Do the same for the Fermat cubic surface S and \mathbb{P}^{2} (assume char $k>3$). Challenge (not to be turned in): Do the same for S and $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
(2) The Krull dimension of a ring R is the largest n for which there exists a strictly increasing chain

$$
\mathfrak{P}_{0} \subset \cdots \subset \mathfrak{P}_{n}
$$

of prime ideals of R.
(a) What is the Krull dimension of \mathbb{Z} ?
(b) Let X be an irreducible affine variety. Prove that the Krull dimension of $k[X]$ is equal to the dimension of X.
(3) Some time ago, we saw the geometric meaning of idempotents of a ring. Here is the analogue for zero-divisors. Let X be an affine variety (not necessarily irreducible). Show that $f \in k[X]$ is a zero-divisor if and only if f vanishes identically on some irreducible component of X. (Recall that an element a of a ring is a zero-divisor if there exists a non-zero element b such that $a b=0$ in the ring.)

