ALGEBRAIC GEOMETRY: HOMEWORK 7

This homework is due on Friday, October 4 by 5pm.
(1) Show that the map $X \mapsto \bar{X}$ gives a bijection between closed subsets of \mathbb{A}^{n} and closed subsets of \mathbb{P}^{n} that do not contain any irreducible component in the hyperplane $V\left(X_{n}\right)$. Here, as usual, $\mathbb{A}^{n} \subset \mathbb{P}^{n}$ is the open subset where $X_{n} \neq 0$.
(2) Prove that every rational map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ extends to a regular map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$.

Remark. In particular, any birational automorphism of \mathbb{P}^{1} is an actual ("biregular") automorphism. It is easy to show that any automorphism of \mathbb{P}^{1} is a projective linear transformation.
(3) Consider the rational map $\chi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ given by

$$
\chi:[X: Y: Z] \mapsto[Y Z: X Z: X Y] .
$$

(a) Prove that $\chi \circ \chi=$ id.
(b) Find the maximal open subset of \mathbb{P}^{2} on which χ is regular.

Remark. For every rational map $f: X \rightarrow Y$, there always exists a maximal (by inclusion) open set in X on which f is regular. Indeed, this open set is simply the union of all U such that $\left(U, f_{U}\right)$ lies in the equivalence class of maps corresponding to f.
(c) Make precise the statement: χ transforms most lines into conics, some lines stay lines, and a few lines are contracted to points.
The map χ is called a "Cremona transformation." The birational automorphism group of \mathbb{P}^{2} is generated by the projective linear transformations and the Cremona transformation, but this is a hard result.

