ALGEBRAIC GEOMETRY: HOMEWORK 6

This homework is due on Friday, September 27 by 5pm.

- (1) Show that $\mathbb{P}^1 \times \mathbb{A}^1$ is neither affine nor projective. What is the ring of regular functions on this variety?
- (2) Let Z ⊂ Pⁿ be a projective variety, and X ⊂ Pⁿ×A^m a closed set. For t ∈ A^m, let X_t ⊂ Pⁿ×{t} = Pⁿ denote the fiber of X over t under the second projection X → A^m. Show that the set of t ∈ A^m such that Z ⊂ X_t is Zariski closed. *Hint: For a given degree d, it may be useful to consider the vector subspace of k*[X₀,...,X_n]_d consisting of polynomials that vanish on Z.
- (3) As usual, let us identify the set of $n \times n$ matrices with \mathbb{A}^{n^2} . Let $S \subset \mathbb{A}^{n^2} \times \mathbb{A}^{n^2}$ be the set of pairs of matrices (A, B) such that A and B have a common eigenvector. Prove that S is a Zariski closed subset of $\mathbb{A}^{n^2} \times \mathbb{A}^{n^2}$. Translation: There exist polynomial equations involving the entries of two matrices that are satisfied if and only if the two matrices share an eigenvector!

Remark. Properties of dimension imply that for n = 2, *one* polynomial equation suffices. What is it? (Food for thought, not to be turned in!)