ALGEBRAIC GEOMETRY: HOMEWORK 6

This homework is due on Friday, September 27 by 5pm.
(1) Show that $\mathbb{P}^{1} \times A^{1}$ is neither affine nor projective. What is the ring of regular functions on this variety?
(2) Let $Z \subset \mathbb{P}^{n}$ be a projective variety, and $X \subset \mathbb{P}^{n} \times \mathbb{A}^{m}$ a closed set. For $t \in \mathbb{A}^{m}$, let $X_{t} \subset \mathbb{P}^{n} \times\{t\}=\mathbb{P}^{n}$ denote the fiber of X over t under the second projection $X \rightarrow \mathbb{A}^{m}$. Show that the set of $t \in \mathbb{A}^{m}$ such that $Z \subset X_{t}$ is Zariski closed. Hint: For a given degree d, it may be useful to consider the vector subspace of $k\left[X_{0}, \ldots, X_{n}\right]_{d}$ consisting of polynomials that vanish on Z.
(3) As usual, let us identify the set of $n \times n$ matrices with $\mathbb{A}^{n^{2}}$. Let $S \subset \mathbb{A}^{n^{2}} \times \mathbb{A}^{n^{2}}$ be the set of pairs of matrices (A, B) such that A and B have a common eigenvector. Prove that S is a Zariski closed subset of $\mathbb{A}^{n^{2}} \times \mathbb{A}^{n^{2}}$.
Translation: There exist polynomial equations involving the entries of two matrices that are satisfied if and only if the two matrices share an eigenvector!
Remark. Properties of dimension imply that for $n=2$, one polynomial equation suffices. What is it? (Food for thought, not to be turned in!)

