ALGEBRAIC GEOMETRY: HOMEWORK 5

(1) In this problem, consider \mathbb{A}^{k} as the open subset of \mathbb{P}^{k} where the last homogenous coordinate is non-zero.

The following maps from an open subset of \mathbb{A}^{n} to \mathbb{A}^{m} extend to regular maps from \mathbb{P}^{n} to \mathbb{P}^{m}. Write down these extensions using homogeneous polynomials.
(a) $f: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ defined by $f(t)=\left(t^{2}-1, t^{3}-t\right)$.
(b) $f: \mathbb{A}^{2} \backslash V(x y) \rightarrow \mathbb{A}^{3}$ defined by $f(x, y)=(x / y, y / x, 1 / x y)$.
(2) Show that the natural map

$$
\pi: \mathbb{A}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{P}^{1}
$$

defined by $\pi(x, y)=[x: y]$ does not extend to a regular map $\pi: \mathbb{A}^{2} \rightarrow \mathbb{P}^{1}$.
(3) (3-transitivity of $P G L_{2}$) Given three distinct points $p_{1}, p_{2}, p_{3} \in \mathbb{P}^{1}$, prove that there exists a unique projective linear transformation $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ that sends

$$
0=[0: 1] \mapsto p_{1}, 1=[1: 1] \mapsto p_{2}, \text { and } \infty=[1: 0] \mapsto p_{3}
$$

(4) (A cubic surface as a conic fibration) Suppose char $k \neq 2,3$.

Let $S \subset \mathbb{P}^{3}$ be the Fermat cubic surface

$$
S=V\left(X^{3}+Y^{3}+Z^{3}+W^{3}\right)
$$

(a) Consider the linear projection $\pi: \mathbb{P}^{3} \rightarrow \mathbb{P}^{1}$ defined by

$$
[X: Y: Z: W] \mapsto[X+Y, Z+W]
$$

Show that the center L of the linear projection is contained in S.
(b) Show that $\pi: S \backslash L \rightarrow \mathbb{P}^{1}$ extends to a regular map $\pi: S \rightarrow \mathbb{P}^{1}$.
(c) What is the fiber of $\pi: S \rightarrow \mathbb{P}^{1}$ over a point $[a: b] \in \mathbb{P}^{1}$? (Be careful!)
(d) (Not to be turned in but highly recommended) Draw a (real) picture depicting L, S, a typical fiber of the linear projection $\pi: \mathbb{P}^{3} \backslash L \rightarrow \mathbb{P}^{1}$, and a typical fiber of $\pi: S \rightarrow \mathbb{P}^{1}$.

