ALGEBRAIC GEOMETRY: HOMEWORK 2

This homework is due by 5pm on Friday, August 9.

We let k be an algebraically closed field.

- (1) Let $X, Y \subset \mathbb{A}_k^n$ be Zariski closed subsets. Show that $I(X \cup Y) = I(X) \cap I(Y)$, and $I(X \cap Y) = \sqrt{I(X) + I(Y)}$. Show with an example that the radical is necessary in the last equation.
- (2) Let $X \subset \mathbb{A}_k^n$ be a Zariski closed subset and let $f: X \to \mathbb{A}_k^1$ be a regular function on X. Show that the graph of f, namely the set $\Gamma \subset \mathbb{A}_k^{n+1}$ defined by $\{(x, f(x)) \mid x \in X\}$ is Zariski closed.
- (3) Let $X \subset \mathbb{A}_k^n$ and $Y \subset \mathbb{A}_k^m$ be Zariski closed sets. Show that $X \times Y \subset \mathbb{A}_k^{n+m}$ is Zariski closed.
- (4) Write down all the maximal ideals of the following rings:
 (a) C[x, y]/(x² + y² − 1, x + y)
 - (b) $\mathbb{C}[x, y]/(xy)$
 - (c) $\mathbb{C}[x, y, z]/(xy, yz, xz)$
- (5) Let $X, Y \subset \mathbb{A}_k^n$ be disjoint affine algebraic sets. Show that

 $k[X \cup Y] \cong k[X] \oplus k[Y].$

(*Hint: Prove that* I(X) + I(Y) = (1) and use a "partition of unity" argument.)