ALGEBRAIC GEOMETRY: HOMEWORK 2

This homework is due by 5pm on Friday, August 9.
We let k be an algebraically closed field.
(1) Let $X, Y \subset \mathbb{A}_{k}^{n}$ be Zariski closed subsets. Show that $I(X \cup Y)=I(X) \cap I(Y)$, and $I(X \cap Y)=\sqrt{I(X)+I(Y)}$. Show with an example that the radical is necessary in the last equation.
(2) Let $X \subset \mathbb{A}_{k}^{n}$ be a Zariski closed subset and let $f: X \rightarrow \mathbb{A}_{k}^{1}$ be a regular function on X. Show that the graph of f, namely the set $\Gamma \subset \mathbb{A}_{k}^{n+1}$ defined by $\{(x, f(x)) \mid x \in X\}$ is Zariski closed.
(3) Let $X \subset \mathbb{A}_{k}^{n}$ and $Y \subset \mathbb{A}_{k}^{m}$ be Zariski closed sets. Show that $X \times Y \subset \mathbb{A}_{k}^{n+m}$ is Zariski closed.
(4) Write down all the maximal ideals of the following rings:
(a) $\mathbb{C}[x, y] /\left(x^{2}+y^{2}-1, x+y\right)$
(b) $\mathbb{C}[x, y] /(x y)$
(c) $\mathbb{C}[x, y, z] /(x y, y z, x z)$
(5) Let $X, Y \subset \mathbb{A}_{k}^{n}$ be disjoint affine algebraic sets. Show that

$$
k[X \cup Y] \cong k[X] \oplus k[Y] .
$$

(Hint: Prove that $I(X)+I(Y)=(1)$ and use a "partition of unity" argument.)

