ALGEBRAIC GEOMETRY: HOMEWORK 1

The homework is due on Friday, August 2 by 5pm.

- (1) Let $U \subset \mathbb{A}^1_{\mathbb{C}}$ be the unit circle; that is, $U = \{z \mid |z| = 1\}$. Is U an affine algebraic subset of $\mathbb{A}^1_{\mathbb{C}}$? Why or why not?
- (2) Let *I* be an ideal of a ring *R*. The radical of *I*, denoted √*I*, is defined as the subset of *R* consisting of elements *a* such that aⁿ ∈ *I* for some positive integer *n*. Show that √*I* is an ideal of *R*, and √√*I* = √*I*.
- (3) Let $k = \mathbb{C}$. Consider the map $f \colon \mathbb{A}_k^2 \to \mathbb{A}_k^2$ given by $(x, y) \mapsto (x, xy)$. Is the image of f closed? Open? Dense?

Often, we can identify the points of an affine space with some other objects of interest. With such an identification, we can ask if a subset of the set of objects forms a closed or open set in the Zariski topology. The next problem is an example.

- (4) Let n be a positive integer. You may take k = C if that helps. Identify the set M_n(k) of k-valued n×n matrices with A^{n²}_k by writing the n² entries of an n×n matrix as a n²-tuple. With this identification, determine whether the following subsets of A^{n²}_k are Zariski closed, open, or neither.
 (a) The set of invertible matrices.
 - (b) The set of nilpotent matrices.
 - (c) For every *r*, the set of matrices of rank at most *r*.
 - (d) The set of diagonalisable matrices.