## MATH 465/565: Grassmannian Notes

The Grassmannian $G(r, n)$ is the set of $r$-dimensional subspaces of the $k$-vector space $k^{n}$; it has a natural bijection with the set $\mathbb{G}(r-1, n-1)$ of $(r-1)$-dimensional linear subspaces $\mathbb{P}^{r-1} \subseteq \mathbb{P}^{n}$. We write $G(k, V)$ for the set of $k$-dimensional subspaces of an $n$-dimensional $k$-vector space $V$.

We'd like to be able to think of $G(r, V)$ as a quasiprojective variety; to do so, we consider the Plücker embedding:

$$
\begin{aligned}
\gamma: G(r, V) & \rightarrow \mathbb{P}\left(\bigwedge_{\wedge}^{r} V\right) \\
\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right) & \mapsto\left[v_{1} \wedge \cdots \wedge v_{r}\right]
\end{aligned}
$$

If $\left(w_{i}=\sum_{j} a_{i j} v_{j}\right)_{1 \leq i \leq r}$ is another ordered basis for $\Lambda=\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right)$, where $A=\left(a_{i j}\right)$ is an invertible matrix, then $w_{1} \wedge \cdots \wedge w_{r}=(\operatorname{det} A)\left(v_{1} \wedge \cdots \wedge v_{r}\right)$. Thus the Plücker embedding is a well-defined function from $G(k, V)$ to $\mathbb{P}\left(\bigwedge^{r} V\right)$. We would like to show, in analogy with what we were able to show for the Segre embedding $\sigma: \mathbb{P}(V) \times \mathbb{P}(W) \rightarrow \mathbb{P}(V \otimes W)$, that

- the Plücker embedding $\gamma$ is injective,
- the image $\gamma(G(r, V))$ is closed, and
- the Grassmannian $G(r, V)$ "locally" can be given a structure as an affine variety, and $\gamma$ restricts to an isomorphism between these "local" pieces of $G(r, V)$ and Zariski open subsets of the image.

Given $x \in \wedge^{r} V$, we say that $x$ is totally decomposable if $x=v_{1} \wedge \cdots \wedge v_{r}$ for some $v_{1}, \ldots, v_{r} \in V$, or equivalently, if $[x]$ is in the image of the Plücker embedding.

Example. Every non-zero element of $\wedge^{1} V$ is trivially totally decomposable.
Example. If $\operatorname{dim} V=3$, then every non-zero element of $\wedge^{2} V$ is totally decomposable.
Proof. Given a sum $v_{1} \wedge v_{2}+v_{3} \wedge v_{4}$ of two non-zero elements of $\wedge^{2} V$, the two-dimensional subspaces $\operatorname{Span}\left(v_{1}, v_{2}\right)$ and $\operatorname{Span}\left(v_{3}, v_{4}\right)$ must intersect. If $w_{1}$ is in the intersection, then we can rewrite $v_{1} \wedge v_{2}=$ $w_{1} \wedge w_{2}$ for some $w_{1} \in \operatorname{Span}\left(v_{1}, v_{2}\right)$. Similarly we can rewrite $v_{3} \wedge v_{4}=w_{1} \wedge w_{3}$ for some $w_{3}$. Then

$$
v_{1} \wedge v_{2}+v_{3} \wedge v_{4}=w_{1} \wedge w_{2}+w_{1} \wedge w_{3}=w_{1} \wedge\left(w_{2}+w_{3}\right)
$$

is totally decomposable. Proceeding in the same way by induction, we can show that any element of $\wedge^{2} V$ is totally decomposable.

Example. On the other hand, if $v_{1}, v_{2}, v_{3}, v_{4} \in V$ are linearly independent, then $v_{1} \wedge v_{2}+v_{3} \wedge v_{4}$ is not totally decomposable. This follows (for char $k \neq 0$ ) from the observation that since $v \wedge v=0$, if $x \in \wedge^{r} V$ is totally decomposable, then $x \wedge x=0$. Since

$$
\begin{aligned}
\left(v_{1} \wedge v_{2}+v_{3} \wedge v_{4}\right) \wedge\left(v_{1} \wedge v_{2}+v_{3} \wedge v_{4}\right) & =v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4}+v_{3} \wedge v_{4} \wedge v_{1} \wedge v_{2} \\
& =2 v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4}
\end{aligned}
$$

which is non-zero since $v_{1}, v_{2}, v_{3}, v_{4} \in V$ are linearly independent (certainly $v_{3} \wedge v_{4} \wedge v_{1} \wedge v_{2}= \pm v_{1} \wedge v_{2} \wedge$ $v_{3} \wedge v_{4}$, and the sign is positive because (13)(24) is an even permutation).

If $e_{1}, \ldots, e_{n}$ is a basis for $V$, then the set of $e_{I}=e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{r}}$ is a basis for $\wedge^{r} V$, where $I=\left\{i_{1}, \ldots, i_{r}\right\}$, with $1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n$. Thus any element of $x \in \bigwedge^{r} V$ has a unique representation in the form

$$
x=\sum_{\substack{I \leq\{1, \ldots, n\} \\ \text { |I| } \mid=r}} a_{I} e_{I}=\sum_{1 \leq i_{1}<\cdots<i_{r} \leq n} a_{i_{1}, i_{2}, \ldots, i_{r}}\left(e_{i_{1}} \wedge \cdots \wedge e_{i_{r}}\right),
$$

and we call the homogeneous coordinates $a_{I}$ the Plücker coordinates on $\mathbb{P}\left(\bigwedge^{r} V\right) \cong \mathbb{P}\binom{n}{r}-1$ associated to the choice of ordered basis $\left(e_{1}, \ldots, e_{n}\right)$ for $V$.

Example. If $V$ has basis $e_{1}, e_{2}, e_{3}, e_{4}$, then every element $x \in \Lambda^{2} V$ can be uniquely written as

$$
x=a_{12}\left(e_{1} \wedge e_{2}\right)+a_{13}\left(e_{1} \wedge e_{3}\right)+a_{14}\left(e_{1} \wedge e_{4}\right)+a_{23}\left(e_{2} \wedge e_{3}\right)+a_{24}\left(e_{2} \wedge e_{4}\right)+a_{34}\left(e_{3} \wedge e_{4}\right)
$$

If $x$ is totally decomposable, then we know $x \wedge x=0$; we compute in terms of the Plücker coordinates that

$$
x \wedge x=\left(a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23}\right)\left(e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}\right)
$$

Hence the image of the Plücker embedding of $G(2,4)$ into $\mathbb{P}^{5}$ satisfies the homogeneous quadric equation $a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23}=0$. (In fact, in this particular case the image is precisely the zero locus of this polynomial.)

To show that the Plücker embedding is an injection, we must describe how to recover $\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right)$ from $x=v_{1} \wedge \cdots \wedge v_{r}$. We observe first that $v_{i} \wedge x=0$ for $1 \leq i \leq r$, and more generally, if $v \in \operatorname{Span}\left(v_{1}, \ldots, v_{r}\right)$, then $v \wedge x$ is zero. In fact, this property determines $\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right)$ :

Proposition. Given a non-zero $x \in \bigwedge^{r} V$, let $\varphi_{x}: V \rightarrow \bigwedge^{r+1} V$ be the linear map

$$
\varphi_{x}(v)=v \wedge x
$$

Then $\operatorname{dim} \operatorname{ker}\left(\varphi_{x}\right) \leq r$, with equality if and only if $x$ is totally decomposable. If $x=v_{1} \wedge \cdots \wedge v_{r}$, then $\operatorname{ker}\left(\varphi_{x}\right)=\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right)$.

Proof. Chose a basis $e_{1}, \ldots, e_{n}$ for $V$ so that $e_{1}, \ldots, e_{s}$ is a basis for $\operatorname{ker}\left(\varphi_{x}\right)$, where $s=\operatorname{dim} \operatorname{ker}\left(\varphi_{x}\right)$. Let $x=\sum_{|I|=r} a_{I} e_{I}$. Then we have

$$
\varphi_{x}\left(e_{i}\right)=e_{i} \wedge x=\sum_{|I|=r} a_{I}\left(e_{i} \wedge e_{I}\right)=\sum_{|I|=r, I \ngtr i} \pm a_{I} e_{I \cup\{i\}},
$$

so if $e_{i} \wedge x=0$, then $a_{I}=0$ whenever $i \notin I$, or equivalently, every non-zero term of $x$ involves $e_{i}$. Since this is true for every $i$ with $1 \leq i \leq s$, we have $s \leq r$ and we can write $x=\left(e_{1} \wedge \cdots \wedge e_{s}\right) \wedge y$ for some $y \in \wedge^{r-s} V$. In the case that $r=s$, we get that $x=a_{1, \ldots, r} e_{1} \wedge \cdots \wedge e_{r}$, and $x$ is totally decomposable.

As for the second statement, in the case $x=v_{1} \wedge \cdots \wedge v_{r}$, we know that $\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right) \subseteq \operatorname{ker}\left(\varphi_{x}\right)$, and we have just shown that both spaces have the same dimension.

Corollary. The Plücker embedding is an injection and its image is closed in $\mathbb{P}\left(\wedge^{k} V\right)$

Proof. Given $x=v_{1} \wedge \cdots \wedge v_{r}$, we've shown $\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right)=\operatorname{ker}\left(\varphi_{x}\right)$, so we can recover the $r$ dimensional subspace $\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right)$ from $x$, and the Plücker embedding is injective.

To show that its image is closed, we note that since $\operatorname{dim} \operatorname{ker}\left(\varphi_{x}\right) \leq r$, with equality if and only if $x$ is totally decomposable, $\operatorname{Rank}\left(\varphi_{x}\right) \geq n-r$, with equality if and only if $x$ is totally decomposable. If $M_{x}$ is a matrix for $\varphi_{x}$ in a given basis $e_{1}, \ldots e_{n}$ for $V$ and the corresponding basis for $\bigwedge^{r+1} V$, with $x=\sum_{|I|=r} a_{I} e_{I}$, then the entries of $M_{x}$ are all 0 or $\pm a_{I}$.

The condition that $\varphi_{x}$ have rank at most $n-r$ is expressed by the vanishing of all the $(n-r+1) \times$ $(n-r+1)$ minors of the matrix $M_{x}$. Since the entries of $M_{x}$ are homogeneous linear in the Plücker coordinates $a_{I}$, we find that the image of the Plücker embedding is the set of common zeros of a collection of homogeneous polynomials of degree $n-r+1$ in the $a_{I}$. Thus the image is closed.

Example. We return to the case of $G(2,4)$, with

$$
x=a_{12}\left(e_{1} \wedge e_{2}\right)+a_{13}\left(e_{1} \wedge e_{3}\right)+a_{14}\left(e_{1} \wedge e_{4}\right)+a_{23}\left(e_{2} \wedge e_{3}\right)+a_{24}\left(e_{2} \wedge e_{4}\right)+a_{34}\left(e_{3} \wedge e_{4}\right)
$$

In the bases $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ for $V$ and $\left(e_{1} \wedge e_{2} \wedge e_{3}, e_{1} \wedge e_{2} \wedge e_{4}, e_{1} \wedge e_{3} \wedge e_{4}, e_{2} \wedge e_{3} \wedge e_{4}\right)$ for $\wedge^{3} V$, the matrix of $\varphi_{x}$ is

$$
M_{x}=\left[\begin{array}{cccc}
a_{23} & -a_{13} & a_{12} & 0 \\
a_{24} & -a_{14} & 0 & a_{12} \\
a_{34} & 0 & -a_{14} & a_{13} \\
0 & a_{34} & -a_{24} & a_{24}
\end{array}\right] .
$$

Here, it's easy to see directly that if any entry of this matrix is non-zero, the matrix must have rank at least 2. The image of $G(2,4)$ under the Plücker embedding is the common zero locus of the sixteen $3 \times 3$ minors of this matrix, such as

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a_{23} & -a_{13} & a_{12} \\
a_{24} & -a_{14} & 0 \\
a_{34} & 0 & -a_{14}
\end{array}\right|=a_{23}\left(-a_{14}\right)\left(-a_{14}\right)-a_{24}\left(-a_{13}\right)\left(-a_{14}\right)-a_{34}\left(-a_{14}\right) a_{12}=a_{14}\left(a_{14} a_{23}-a_{13} a_{24}+a_{12} a_{34}\right), \\
& \left|\begin{array}{ccc}
a_{23} & -a_{13} & a_{12} \\
a_{24} & -a_{14} & 0 \\
0 & a_{34} & -a_{24}
\end{array}\right|=a_{23}\left(-a_{14}\right)\left(-a_{24}\right)+a_{12} a_{24} a_{34}-a_{24}\left(-a_{13}\right)\left(-a_{24}\right)=a_{24}\left(a_{14} a_{23}+a_{12} a_{34}-a_{13} a_{24}\right), \text { and } \\
& \left|\begin{array}{ccc}
-a_{13} & a_{12} & 0 \\
-a_{14} & 0 & a_{12} \\
0 & -a_{14} & a_{13}
\end{array}\right|=-\left(-a_{13}\right)\left(a_{12}\right)\left(-a_{14}\right)-a_{12}\left(-a_{14}\right) a_{13}=0 .
\end{aligned}
$$

Indeed, four of the $3 \times 3$ minors are zero, and the rest are all multiples of the degree two polynomial $a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23}$ that we found earlier by $\pm a_{I}$. In general, while the equations we found for the Plücker image have degree $n-r+1$, in fact in characteristic 0 the homogeneous ideal of the Plücker image is always generated by degree 2 polynomials.

## Local coordinates on Grassmannians

Given an $r \times n$ matrix $B=\left(b_{i j}\right)$ of rank $r$, the row space of $B$ maps under the Plücker embedding to

$$
\left(b_{11} e_{1}+\cdots+b_{1 n} e_{n}\right) \wedge \cdots \wedge\left(b_{r 1} e_{1}+\cdots+b_{r n} e_{n}\right)=\sum_{|J|=r} a_{J} e_{J},
$$

where the $a_{I}$ are the usual Plücker coordinates. In this product, only the terms $b_{i j} e_{j}$ with $j \in J$ contribute to the term $a_{J} e_{J}$, and

$$
\left(b_{1 j_{1}} e_{j_{1}}+\cdots+b_{1 j_{r}} e_{j_{r}}\right) \wedge \cdots \wedge\left(b_{r j_{1}} e_{j_{1}}+\cdots+b_{r j_{n}} e_{j_{n}}\right)=\left(\operatorname{det}\left(b_{i j_{l}}\right)_{1 \leq i, l \leq r}\right)\left(e_{j_{1}} \wedge \cdots \wedge e_{j_{r}}\right),
$$

i.e. the Plücker coordinate $a_{J}$ is the $r \times r$ minor of the matrix $B$ obtained by taking all $r$ rows and the $r$ columns with indices in $J$.

We wish to describe the open subsets of $G(r, n)$ where some $a_{J} \neq 0$. For simplicity of notation, we will consider the case where $a_{1, \ldots, r} \neq 0$; every other case is equivalent to this one by permuting our basis for $V$. The corresponding minor of $B$ is just the determinant of the leftmost $r \times r$ submatrix, and condition $a_{1, \ldots, r} \neq 0$ means this submatrix is invertible. Multiplying on the left by the inverse of this matrix, we can replace our matrix with a new matrix $B$ of the form

$$
B=\left[\begin{array}{cccccccc}
1 & 0 & \ldots & 0 & b_{1, r+1} & b_{1, r+2} & \ldots & b_{1, n} \\
0 & 1 & \ldots & 0 & b_{2, r+1} & b_{2, r+2} & \ldots & b_{2, n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & b_{r, r+1} & b_{r, r+2} & \ldots & b_{r, n}
\end{array}\right]
$$

with the same row space. Equivalently, performing elementary row operations on $B$ changes basis for the row space (without changing the basis for $V$ ), and using Gaussian elimination we can put $B$ in reduced row echelon form. The condition that the the leftmost $r \times r$ minor is non-zero implies that the leading 1 in each row will be in this position.

Moreover, any two distinct matrices of this form will have different row spaces. Thus we can think of these $b_{i j}$ for $1 \leq i \leq r$ and $r+1 \leq j \leq n$ as "local coordinates" on $G(r, n)$, and the Plücker gives us a bijection between $\mathbb{A}^{r(n-r)}$ (with coordinates $b_{i j}$ ) and the open subset $a_{1, \ldots, r} \neq 0$ of the Plücker image. The $a_{J}$ are given by the $r \times r$ minors of this matrix, which are certainly polynomials in the entries, so to show that the Plücker embedding is "locally an isomorphism" we must show that the inverse is regular, i.e. we must compute the $b_{i j}$ in terms $a_{J}$.

To do so, we must compute other minors of this $r \times n$ matrix $B$; for example,

$$
a_{2,3, \ldots, r, j}=\left|\begin{array}{cccc}
0 & \ldots & 0 & b_{1, j} \\
1 & \ldots & 0 & b_{2, j} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \ldots & 1 & b_{r, j}
\end{array}\right|=(-1)^{r+1} b_{1, j},
$$

as we can see by Gaussian elimination or by expanding by minors across the first row. Similarly, for this matrix $B$, we have $a_{1, \ldots, \hat{i}, \ldots, r, j}=(-1)^{r+i} b_{i, j}$, where $\hat{i}$ means that the $i$ is omitted. Of course, this was for matrices with the special form above, where in particular $a_{1, \ldots, r}=1$; to express the $b_{i, j}$ as regular functions in the $a_{J}$ on the open subset $a_{1, \ldots, r} \neq 0$ of the Plücker image, we homogenize, yielding

$$
b_{i, j}=(-1)^{r+i} \frac{a_{1, \ldots, \hat{i}, \ldots, r, j}}{a_{1, \ldots, r}}
$$

Thus the Plücker embedding is "locally an isomorphism." Whenever we write $G(r, n)$, we will think of it as a quasiprojective variety by identifying it with its image under the Plücker embedding. On the other hand, to show for example that a map from $G(r, n)$ is regular or that a subset of $G(r, n)$ is closed, it suffices by what we've just shown to check these properties on each of the affine open sets (isomorphic to $\mathbb{A}^{r(n-r)}$ ) that we've described.

Remark. We can describe our local coordinate charts without reference to a basis. Given a subspace $\Gamma \subseteq V$ of dimension $n-r$, we can consider the set

$$
U_{\Gamma}=\{\Lambda \in G(r, V): \Lambda \cap \Gamma=(0) .\}
$$

Then $U_{\Gamma}$ is an open subset of $G(r, V)$, and if we fix a $\Lambda_{0} \in U_{\Gamma}$, then every element of $U_{\Gamma}$ has the form

$$
\Lambda_{\alpha}=\left\{v+\alpha(v): v \in \Lambda_{0}\right\}
$$

for a unique $\alpha \in \operatorname{Hom}_{k}\left(\Lambda_{0}, \Gamma\right)$. This gives a bijection $U_{\Gamma} \cong \operatorname{Hom}_{k}\left(\Lambda_{0}, \Gamma\right)$.

## The Plücker relations

We saw above that the Plücker coordinates of the row space of

$$
B=\left[\begin{array}{cccccccc}
1 & 0 & \ldots & 0 & b_{1, r+1} & b_{1, r+2} & \ldots & b_{1, n} \\
0 & 1 & \ldots & 0 & b_{2, r+1} & b_{2, r+2} & \ldots & b_{2, n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & b_{r, r+1} & b_{r, r+2} & \ldots & b_{r, n}
\end{array}\right]
$$

are given by $b_{i, j}=(-1)^{r+i} \frac{a_{1, \ldots, \hat{i}, \ldots, r, j}}{a_{1, \ldots, r}}$. Similarly, the $r \times r$ minor of this matrix including all but $s$ of the first $r$ columns, with the omitted columns indexed by $i_{1}, \ldots, i_{s}$, and $s$ of the remaining columns, indexed by $j_{1}, \ldots, j_{s}$, will be (up to sign) equal to the $s \times s$ minor obtained by taking rows $i_{1}, \ldots, i_{s}$ and columns $j_{1}, \ldots, j_{s}$.

Taking $a_{1, \ldots, r}=1$, we find then that determinant of this $s \times s$ submatrix is, up to sign, equal to $a_{1, \ldots, \hat{i}_{1}, \ldots, \hat{i}_{s}, \ldots, r, j_{1}, \ldots, j_{s}}$. On the other hand, we could compute this determinant by expanding by minors along some row or column, giving an expression in terms of the $b_{i, j}=(-1)^{r+i} a_{1, \ldots, \hat{i}, \ldots, r, j}$ multiplied by $(s-1) \times(s-1)$ minors, which in turn are, up to sign, equal to Plücker coordinates $a_{J}$. Computing this determinant in these two different ways, we can obtain a quadratic relation on the Plücker coordinates. The quadratic relations we obtain in this way are the Plücker relations involving $a_{1, \ldots, r}$.

For example, for $a_{1, \ldots, r}=1$, we have

$$
a_{3, \ldots, r, j, l}=\left|\begin{array}{cccccc}
0 & 0 & \ldots & 0 & b_{1, j} & b_{1, l} \\
0 & 0 & \ldots & 0 & b_{2, j} & b_{2, l} \\
1 & 0 & \ldots & 0 & b_{3, j} & b_{2, l} \\
0 & 1 & \ldots & 0 & b_{4, j} & b_{2, l} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & b_{r, j} & b_{r, l}
\end{array}\right|=(-1)^{r}\left|\begin{array}{cc}
b_{1, j} & b_{1, l} \\
b_{2, j} & b_{2, l}
\end{array}\right|,
$$

but expanding this $2 \times 2$ determinant by minors, we can also compute (again, taking $a_{1, \ldots, r}=1$ ) that

$$
\begin{aligned}
\left|\begin{array}{cc}
b_{1, j} & b_{1, l} \\
b_{2, j} & b_{2, l}
\end{array}\right| & =b_{1, j} b_{2, l}-b_{1, l} b_{2, j} \\
& =(-1)^{r+1} a_{2,3, \ldots, r, j}(-1)^{r+2} a_{1,3, \ldots, r, l}-(-1)^{r+1} a_{2,3, \ldots, r, l}(-1)^{r+2} a_{1,3, \ldots, r, j} \\
& =a_{1,3, \ldots, r, j} a_{2,3, \ldots, r, l}-a_{1,3, \ldots, r, l} a_{2,3, \ldots, r, j}
\end{aligned}
$$

which yields $(-1)^{r} a_{3, \ldots, r, j, l}=a_{1,3, \ldots, r, j} a_{2,3, \ldots, r, l}-a_{1,3, \ldots, r, l} a_{2,3, \ldots, r, j}$. Homogenizing this relation, we get

$$
(-1)^{r} a_{1,2, \ldots, r} a_{3, \ldots, r, j, l}=a_{1,3, \ldots, r, j} a_{2,3, \ldots, r, l}-a_{1,3, \ldots, r, l} a_{2,3, \ldots, r, j}
$$

Note that in the special case $n=4, r=2, j=3$, and $l=4$, we recover

$$
a_{12} a_{34}=a_{13} a_{24}-a_{14} a_{23},
$$

which we saw previously is the single equation for the image of $G(2,4)$ under the Plücker embedding. Remark. See Shafarevich or Harris (handout on website) for an exposition of the Plücker relations that does not rely on local coordinates. The approach is essentially the same in both books, although the notation is different. Harris refers to a somewhat natural isomorphism $\wedge^{r} V \cong \bigwedge^{n-r} V^{*}$; to construct this isomorphism, note first that there is a non-degenerate bilinear map

$$
\bigwedge^{r} V \times \bigwedge^{n-r} V \longrightarrow \bigwedge^{n} V
$$

defined by $(x, y) \mapsto x \wedge y$. The vector space $\wedge^{n} V$ is one-dimensional, so if we choose an identification $k \cong \bigwedge^{n} V$, this non-degenerate bilinear map induces an isomorphism $\bigwedge^{r} V \cong\left(\bigwedge^{n-r} V\right)^{*}$, natural only up to multiplication by a scalar because of the choice of a basis for $\Lambda^{n} V$.

Now, there is a natural bilinear map

$$
\bigwedge^{n-r} V^{*} \times \bigwedge^{n-r} V \longrightarrow k
$$

defined by $(u, x) \mapsto u\lrcorner x$, called the convolution of $u$ and $x$ (see Shafarevich for the definition). This induces a natural isomorphism $\left(\bigwedge^{n-r} V\right)^{*} \cong \bigwedge^{n-r} V^{*}$. Composing these two isomorphisms, we get an isomorphism

$$
\bigwedge^{r} V \cong\left(\bigwedge^{n-r} V\right)^{*} \cong \bigwedge^{n-r} V^{*}
$$

natural up to multiplication by a scalar (due to the choice of identification $k \cong \bigwedge^{n} V$ ). For $x \in \bigwedge^{r} V$, Harris uses $x^{*}$ to denote the corresponding element of $\wedge^{n-r} V^{*}$.

