ALGEBRAIC GEOMETRY: WORKSHOP 8

Let us prove the following result asserted in class.

Proposition 1. A projective variety $X \subset \mathbb{P}^n$ is irreducible if and only if the cone $CX \subset \mathbb{A}^{n+1}$ is irreducible.

Fo the proof, let us import the notion of a fiber bundle from geometry/topology. Let X and F be varieties.

Definition 2. A *fiber bundle* over X with fiber F is a variety Y along with a map $\pi: Y \to X$ such that the following holds: there exists an open covering U_i of X and for every *i* an isomorphism $\pi^{-1}U_i \cong F \times U_i$, compatible with the projection to U_i .

For example, $Y = X \times F \rightarrow X$ is a fiber bundle with fiber *F*. Let us abbreviate "fiber bundle with fiber *F*" by "*F*-bundle".

- (1) Show that $\mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ is an $\mathbb{A}^1 \setminus \{0\}$ bundle.
- (2) Show that if $\pi: Y \to X$ is an *F*-bundle and $Z \subset X$ is a open/closed subvariety, then $\pi^{-1}Z \to Z$ is also an *F*-bundle.
- (3) Adapt the proof from class to show that if *F* and *X* are irreducible and $Y \rightarrow X$ is an *F*-bundle, then *Y* is also irreducible.
- (4) Conclude that $X \subset \mathbb{P}^n$ is irreducible if and only if $CX \setminus \{0\}$ is irreducible.
- (5) Conclude that $X \subset \mathbb{P}^n$ is irreducible if and only if CX is irreducible.

For Luke:

The proof of the third part I have in mind is the following. Let $\pi: Y \to X$ be an *F*-bundle. Suppose $Y = A \cup B$ where *A* and *B* are closed subsets of *Y*. We want to prove that A = Y or B = Y.

For every $x \in X$, the fiber Y_x is a copy of F, which is irreducible. So $A_x = Y_x$ or $B_x = Y_x$. Let $\alpha \subset X$ (resp. β) be the set of $x \in X$ such that $A_x = Y_x$ (resp. $B_x = Y_x$).

We proved in class that for a product (i.e. trivial bundle), α and β are closed subsets of X. More generally, the same holds. From the result in class, it follows that $U_i \cap \alpha$ and $U_i \cap \beta$ are closed in U_i , and since the U_i form an open cover of X, we see that α and β are closed in X.

Finally, since $\alpha \cup \beta = X$, from the irreducibility of *X*, we see that $\alpha = X$ or $\beta = X$. So A = Y or B = Y.