ALGEBRAIC GEOMETRY: WORKSHOP 7

In class, we showed that a closed subset of $\mathbb{P}^{n} \times \mathbb{A}^{m}$ projects down to a closed subset of \mathbb{A}^{m}. The proof, however, did not give a good way of computing this closed subset. Today, we will see how to find the equations for this set for $n=1$ and when $Z \subset \mathbb{P}^{1} \times \mathbb{A}^{m}$ is defined by two polynomials.

The basic question is the following. Consider a system

$$
F(X, Y)=0 \text { and } G(X, Y)=0,
$$

where F and G are homogeneous of degrees d and e, respectively. When does the system have a non-zero solution (X, Y) ?
(1) Show that the system above has a non-zero solution if an only if F and G have at least one common linear factor.
(2) Show that F and G have a common linear factor if and only if there exists a homogeneous polynomial A of degree $e-1$ and a homogeneous polynomial B of degree $d-1$ such that

$$
A F+B G=0
$$

(3) Show that the existence of A and B as above is equivalent to the non-injectivity of the following linear map

$$
m: k[X, Y]_{e-1} \oplus k[X, Y]_{d-1} \rightarrow k[X, Y]_{d+e-1}
$$

defined by

$$
m:(A, B) \mapsto A F+B G
$$

(4) Let $F(X, Y, s, t)=s X^{2}+t Y^{2}$ and $G(X, Y, s, t)=X^{2}+s t X Y+Y^{2}$. Using the previous part, write an equation in s, t that is satisfied precisely when $F(X, Y, s, t)$ and $G(X, Y, s, t)$ have a common zero in \mathbb{P}^{1}. Your equation will have the form det $\cdots=0$. The matrix \cdots is called the resultant matrix of F and G and its determinant is called the resultant.
(5) The general case is similar. Given $F\left(X, Y, t_{1}, \ldots, t_{m}\right)$ and $G\left(X, Y, t_{1}, \ldots, t_{m}\right)$, the projection of $V(F, G) \subset \mathbb{P}^{1} \times \mathbb{A}^{m}$ in \mathbb{A}^{m} is cut out by the resultant of F and G.

