ALGEBRAIC GEOMETRY: WORKSHOP 5

In class, we saw that projection from a point on a non-degenerate conic in \mathbb{P}^{2} gives an isomorphism to \mathbb{P}^{1}. Let us explore what happens when we project a non-degenate quadric in higher dimensions.

Let $Q=V(X Y-Z W) \subset \mathbb{P}^{3}$, and consider the linear projection

$$
\pi: \mathbb{P}^{3} \rightarrow \mathbb{P}^{2}
$$

defined by

$$
[X: Y: Z: W] \mapsto[X: Y: Z]
$$

(1) What is the center of the projection (call it P)?
(2) What are the fibers of the map $\pi: \mathbb{P}^{3} \backslash P \rightarrow \mathbb{P}^{2}$?
(3) What is the image of the map $\pi: Q \backslash P \rightarrow \mathbb{P}^{2}$? What are the fibers?
(4) Conclude that there are exactly two lines through P that are contained in S.
(5) Show that $\pi: Q \backslash P \rightarrow \mathbb{P}^{2}$ does not extend to a regular map $Q \rightarrow \mathbb{P}^{2}$.
(6) Construct a map $\psi: \mathbb{P}^{2} \rightarrow Q$ that is "almost an inverse" to π. (Remember that \rightarrow means that the map may be defined only on an open subset.)

