ALGEBRAIC GEOMETRY: PRACTICE QUESTIONS

You should be able to do all the questions on all the homeworks and all the workshop questions. In addition, here are more practice questions.
(1) Let $X \subset \mathbb{A}^{3}$ be the union of the three coordinate axes. Find $I(X)$.
(2) Let $I, J \subset k\left[x_{1}, \ldots, x_{n}\right]$ be ideals. Denote by $I J$ the ideal generated by $\{f g \mid$ $f \in I, g \in J\}$. Prove that $\sqrt{I J}=\sqrt{I \cap J}$.
(3) Describe explicitly all the maximal ideals of the ring $k[x, y] /\left(x^{2}-y^{3}\right)$.
(4) Let $X \subset \mathbb{A}^{n}$ and $Y \subset \mathbb{A}^{n}$ be disjoint Zariski closed sets. Show that there exists a polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ such that the function $\left.f\right|_{X}$ is identically 0 and $\left.f\right|_{Y}$ is identically 1 .
(5) Give an example of a regular map $f: X \rightarrow Y$ that is a bijection, but the inverse map is not regular.
(6) char $k \neq 2$. Construct an isomorphism between the affine variety defined by $x^{2}+y^{2}=1$ in \mathbb{A}^{2} and the affine variety defined by $x y=1$ in \mathbb{A}^{2}.
(7) Construct an isomorphism from $\mathbb{A}^{1} \backslash\{0,1\}$ to a Zariski closed subspace of \mathbb{A}^{n} for some n.
(8) As usual, think of $\mathbb{A}^{3} \subset \mathbb{P}^{3}$ as the open subset where the last homogeneous coordinate is nonzero. Find the closure in \mathbb{P}^{3} of $V\left(x-y^{4}, x-z^{7}\right)$.
(9) Let m, n be positive integers, and let $f_{1}, \ldots, f_{n} \in k\left[x_{1}, \ldots, x_{m}\right]$. Consider the $\operatorname{map} f: \mathbb{A}^{m} \rightarrow \mathbb{A}^{n}$ defined by

$$
f(p)=\left(f_{1}(p), \ldots, f_{n}(p)\right)
$$

Show that f is surjective if and only if for all $a_{1}, \ldots, a_{n} \in k$, the ideal $\left\langle f_{1}-\right.$ $\left.a_{1}, \ldots, f_{n}-a_{n}\right\rangle$ is not the unit ideal.
(10) Let $U \subset \mathbb{P}^{n}$ be a quasi projective variety. When is a map $f: U \rightarrow \mathbb{P}^{m}$ called a regular map?
(11) Let $X=V\left(y^{2}-x^{3}\right)$ and $U=X \backslash\{(0,0)\}$. Show that the function y / x on U does not extend to a regular function on X.
(12) Prove that every regular map $\mathbb{P}^{1} \rightarrow \mathbb{A}^{1}$ is a constant.
(13) Prove that the hyperbola, defined by $x y=1$ in \mathbb{A}^{2}, and the line \mathbb{A}^{1} are not isomorphic.
(14) Prove that all isomorphisms $f: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ are of the form $f(x)=a x+b$.
(15) Prove that any two non-empty Zariski open subsets of \mathbb{P}^{n} have a non-empty intersection.
(16) Prove that every affine variety is (isomorphic to) a quasi-projective variety.
(17) Let $v: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ be the degree 2 Veronese map. Describe the image under v of the line $Z=0$ in \mathbb{P}^{2}.
(18) Let $v_{m}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ be the degree m Veronese map. Prove that the linear span of $v_{m}\left(\mathbb{P}^{n}\right)$ is \mathbb{P}^{N}.
(19) char $k \neq 2$. Construct an isomorphism from the quadric surface $X^{2}+Y^{2}+$ $Z^{2}+W^{2}=0$ in \mathbb{P}^{3} to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
(20) Let $C \subset \mathbb{P}^{2}$ be the Fermat cubic curve

$$
C=V\left(X^{3}+Y^{3}+Z^{3}\right) .
$$

(a) Show that the linear projection $[X: Y: Z] \mapsto[X+Y: Z]$ when restricted to C extends to a regular map $\phi: C \rightarrow \mathbb{P}^{1}$.
(b) Describe the fibers of ϕ.

