ALGEBRAIC GEOMETRY: PRACTICE QUESTIONS

You should be able to do all the questions on all the homeworks and all the workshop questions. In addition, here are more practice questions.

- (1) Prove that $\mathbb{P}^1 \times \mathbb{P}^1$ and \mathbb{P}^2 are birational but not isomorphic.
- (2) Prove that $\mathbb{P}^1 \times \mathbb{P}^3$ and $\mathbb{P}^2 \times \mathbb{P}^2$ are birational but not isomorphic.
- (3) Let $X = V(xy, yz) \subset \mathbb{A}^3$. Decompose X into irreducible components. What are their dimensions?
- (4) Let X be an irreducible quasi-projective variety. State the definition of the dimension of X. Show that X has subvarieties of every dimension from 0 to $\dim X$.
- (5) Prove that a closed subset $X \subset \mathbb{A}^n$ is irreducible if and only if the ideal $I(X) \subset k[x_1, \ldots, x_n]$ is prime.
- (6) Show that any birational automorphism of \mathbb{P}^1 is a projective linear transformation.
- (7) For every $n \ge 2$, give an example of a birational isomorphism $\mathbb{P}^n \to \mathbb{P}^n$ that does not extend to a regular map.
- (8) Let M be an n×n matrix. A vector v ∈ kⁿ is called a generator for M if the set v, Mv, M²v,..., Mⁿ⁻¹v spans kⁿ. For example, if M is the diagonal matrix with distinct entries a₁,..., a_n, then the vector [1,...,1] is a generator. Let U ⊂ P Mat_{n×n} be the set (up to scaling) of matrices that admit a generator. Prove that U is Zariski open.

(Hint: Consider the space of pairs (M, v) such that v is not a generator of M.

- (9) Let $\phi \colon \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^{(a+1)(b+1)-1}$ be the composite $\tau = \sigma \circ (v_a \times v_b)$, where the map $v_m \colon \mathbb{P}^1 \to \mathbb{P}^m$ is the degree *m* Veronese and $\sigma \colon \mathbb{P}^m \times \mathbb{P}^n \to \mathbb{P}^{(m+1)(n+1)-1}$ is the Segre map.
 - (a) Write the map τ explicitly: where does ([X : Y], [U : V]) go?
 - (b) Let $F \subset k[X, Y, U, V]$ be bihomogeneous of bidegree a, b with a, b > 0. Show that $\mathbb{P}^1 \times \mathbb{P}^1 \setminus V(F)$ is affine.
- (10) Find all singular points on the curve $V(X^3Y Z^4) \subset \mathbb{P}^2$.
- (11) Let $X \subset \mathbb{P}^n$ be a closed subvariety. Fix positive integers r and l. Let $\Sigma \subset Gr(r, n+1)$ be the set of Λ such that $\dim(\mathbb{P}\Lambda \cap X) \ge l$. Prove that Σ is a closed subvariety.
- (12) Prove that not all degree 4 hypersurfaces in \mathbb{P}^3 contain a line.