ALGEBRAIC GEOMETRY: PRACTICE QUESTIONS

You should be able to do all the questions on all the homeworks and all the workshop questions. In addition, here are more practice questions.
(1) Prove that $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and \mathbb{P}^{2} are birational but not isomorphic.
(2) Prove that $\mathbb{P}^{1} \times \mathbb{P}^{3}$ and $\mathbb{P}^{2} \times \mathbb{P}^{2}$ are birational but not isomorphic.
(3) Let $X=V(x y, y z) \subset \mathbb{A}^{3}$. Decompose X into irreducible components. What are their dimensions?
(4) Let X be an irreducible quasi-projective variety. State the definition of the dimension of X. Show that X has subvarieties of every dimension from 0 to $\operatorname{dim} X$.
(5) Prove that a closed subset $X \subset \mathbb{A}^{n}$ is irreducible if and only if the ideal $I(X) \subset k\left[x_{1}, \ldots, x_{n}\right]$ is prime.
(6) Show that any birational automorphism of \mathbb{P}^{1} is a projective linear transformation.
(7) For every $n \geq 2$, give an example of a birational isomorphism $\mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ that does not extend to a regular map.
(8) Let M be an $n \times n$ matrix. A vector $v \in k^{n}$ is called a generator for M if the set $v, M v, M^{2} v, \ldots, M^{n-1} v$ spans k^{n}. For example, if M is the diagonal matrix with distinct entries a_{1}, \ldots, a_{n}, then the vector $[1, \ldots, 1]$ is a generator. Let $U \subset \mathbb{P}$ Mat $_{n \times n}$ be the set (up to scaling) of matrices that admit a generator. Prove that U is Zariski open.
(Hint: Consider the space of pairs (M, v) such that v is not a generator of M.
(9) Let $\phi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{(a+1)(b+1)-1}$ be the composite $\tau=\sigma \circ\left(v_{a} \times v_{b}\right)$, where the map $v_{m}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{m}$ is the degree m Veronese and $\sigma: \mathbb{P}^{m} \times \mathbb{P}^{n} \rightarrow \mathbb{P}^{(m+1)(n+1)-1}$ is the Segre map.
(a) Write the map τ explicitly: where does $([X: Y],[U: V])$ go?
(b) Let $F \subset k[X, Y, U, V]$ be bihomogeneous of bidegree a, b with $a, b>0$. Show that $\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash V(F)$ is affine.
(10) Find all singular points on the curve $V\left(X^{3} Y-Z^{4}\right) \subset \mathbb{P}^{2}$.
(11) Let $X \subset \mathbb{P}^{n}$ be a closed subvariety. Fix positive integers r and l. Let $\Sigma \subset$ $\operatorname{Gr}(r, n+1)$ be the set of Λ such that $\operatorname{dim}(\mathbb{P} \Lambda \cap X) \geq l$. Prove that Σ is a closed subvariety.
(12) Prove that not all degree 4 hypersurfaces in \mathbb{P}^{3} contain a line.

