Algebraic Stack: Roughly speaking, an algebraic stack is a stack that "locally" looks like a scheme (or equivalently, the spectrum of a ring). I.e., we must have an "atlas" \(U \overset{\pi}{\to} \mathcal{X} \) for \(\mathcal{X} \), where \(\pi \) is a covering in the appropriate sense, and \(U \) is a scheme.

1. \(\pi \) étale \(\iff \) Deligne-Mumford stack
2. \(\pi \) smooth \(\iff \) Artin stack.

However, to make sense of such properties for \(\pi \), it must be representable. Let us see what this entails.

\[
\begin{align*}
U \times_{\mathcal{X}} V &\to U \quad \text{schematic} \quad \forall \xi \in \mathcal{X}(U) \\
\downarrow &\downarrow \chi \\
V &\to \mathcal{X}
\end{align*}
\]

\(U \times_{\mathcal{X}} V \,(T) = \{ (f:T \to U, g:T \to V, \psi : f^*\xi \to g^*\beta) \} \)

\(=: \text{Isom} \,(\xi, \beta) \).

Rem: \(\mathcal{X} \) stack \(\Rightarrow \text{Isom} \,(\xi, \beta) \) is a sheaf (the first condition in the def.)

Prop: We have \(U \times_{\mathcal{X}} V = (U \times V) \times_{\mathcal{X} \times \mathcal{X}} \mathcal{X} \)

\[\text{If:}\]

\[
\begin{array}{ccc}
\square &\to& U \times V \\
\downarrow & & \downarrow \\
\mathcal{X} &\Delta& \mathcal{X} \times \mathcal{X}
\end{array}
\]

\(\square \,(T) = \{ (f:T \to U, g:T \to V, \tau \in \mathcal{X}(T), (f^*\xi, g^*\beta) \to (\tau, \eta)) \} \)

\(\downarrow \text{equiv.} \)

\(\{ (f, g, f^*\xi \to g^*\beta) \} = U \times_{\mathcal{X}} V \,(T) \).

So, \(U \times_{\mathcal{X}} V \) will be a scheme if \(\Delta \) is representable.

In fact the converse is also true.
Def: A Deligne-Mumford stack is a stack \mathcal{X} such that

1. $\Delta : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$ is representable, separated, quasi-compact
2. There is a scheme U and an étale surjective morphism $U \to \mathcal{X}$

(called an "atlas").

Rem: $DM \leftrightarrow \text{étale atlas}$

$\text{Artin} \leftrightarrow \text{smooth atlas}$

Rem: For a DM stack \mathcal{X}

Rem on the diagonal:

$\Delta : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$

either $\phi \leftarrow \text{Isom}(\alpha, \beta) \to \text{Spec } \mathbb{C}$

or $\text{Aut}(\alpha)$

For a scheme, Δ is a (locally closed) embedding.

Prop: Let \mathcal{X} be a DM stack. Then Δ is unramified.

Proof: (In particular, for any $x \in \mathcal{X}(k)$ the group $\text{Aut}(x)$ is finite. In fact, the automorphism scheme is finite and reduced.)

Pf:

For Mg_g, we know (1).

We also know that Δ is unramified.
Prop: Let \(\mathcal{X} \) be a stack over a Noetherian base scheme \(S \), such that

Thm:

1. \(\Delta \) is repr., g.c., separated, and unramified.
2. \(E \) is finite type over \(S \) and a smooth surj \(E \to \mathcal{X} \).

Then \(\mathcal{X} \) is D.M.

i.e. Given that \(\Delta \) is unramified, a smooth atlas \(\Rightarrow \) an étale atlas.

Cor: \(Mg \) is a D.M. stack.

PF: we only need to produce a smooth atlas.

Let \(d > 2g-2 \). Consider \(H \subset \text{Hilb} \) the open set parameterizing smooth curves of arithmetic genus \(g \) and degree \(d \) in \(\mathbb{P}^r \), where \(r = d-3g+1 \).

Claim: \(H \to Mg \) is smooth.

PF: Sufficient to check the infinitesimal lifting criterion.

\[
\begin{array}{c}
E \to E' \\
\downarrow \downarrow \\
\text{Spec} \mathcal{A} \to \text{Spec} \mathcal{A'}
\end{array}
\]

Given: An embedding \(E \subset \mathbb{P}^r_{\mathcal{A}} \) of deg \(d \).

Want: An extension \(E' \subset \mathbb{P}^r_{\mathcal{A}'} \).

Let \(L_{\mathcal{A}} = \mathcal{O}(1) \subset \mathbb{P}^r_{\mathcal{A}} \) restricted to \(E \). We have an iso.

\[A^{TM} \cong H^0(E, L_{\mathcal{A}}). \]

Extend \(L_{\mathcal{A}} \) to a line bundle \(L_{\mathcal{A}'} \) on \(E' \).

Then \(H^0(E', L_{\mathcal{A}'}) \) is locally free of rank \((r, \text{th}) \) by coh \(\text{th} \) base change.

so we get \(H^0(E', L_{\mathcal{A}'}) \to A^{TM} \) extending \(\circ \).

Thus \(E' \to \mathbb{P}^r_{\mathcal{A}'} \). (embedding automatic). \(\square \).
Pf 1. thm (Sketch): In char 0, or say over C.

Take a point \(x: \text{spec} \ C \to \mathcal{X} \). We want to produce an étale chart for \(\mathcal{X} \) around \(x \). We have:

\[
\begin{array}{ccc}
\mathcal{U}_x & \xrightarrow{i} & \mathcal{U} \\
\downarrow & & \downarrow \\
\mathcal{X} & \Delta & \mathcal{X} \times \mathcal{X}
\end{array}
\]

Note that:

\[
\begin{array}{ccc}
\mathcal{U}_x & \xrightarrow{i} & \mathcal{X} \times \mathcal{U} \\
\downarrow & & \downarrow \\
\mathcal{X} & \to & \mathcal{X} \times \mathcal{X}
\end{array}
\]

\(\Rightarrow \ i: \mathcal{U}_x \to \mathcal{U} \) is unramified. \(\Rightarrow \)

\[\tilde{\mathcal{U}}_x \xrightarrow{i} \tilde{\mathcal{U}} \]

étale \(\downarrow \) étale

\[\tilde{\mathcal{U}}_x \xrightarrow{i} \mathcal{U} \]

Since \(\mathcal{U} \to \mathcal{X} \) is smooth, \(\tilde{\mathcal{U}}_x \to \text{spec} \ C \) is smooth.

\(\Rightarrow \) \(\tilde{x} \in \tilde{\mathcal{U}}_x \) is cut out by a regular sequence \(t_1, \ldots, t_m \).

Lift \(t_i \) to \(\tilde{t}_i \) on \(\tilde{\mathcal{U}} \) and set \(\mathcal{Z} = V(\tilde{t}_i) \subset \tilde{\mathcal{U}} \).

Claim: The map \(\mathcal{Z} \to \mathcal{X} \) is étale over \(\tilde{x} \).

Pf: We need to check that the map \(\sim \mathcal{U}_x \mathcal{Z} \to \mathcal{Z} \) is étale over \(\tilde{x} \).

\[
\begin{array}{ccc}
\sim \mathcal{U}_x \mathcal{Z} & \to & \mathcal{Z} \\
\downarrow & & \downarrow \\
\mathcal{U} & \to & \mathcal{X}
\end{array}
\]

Now \(\tilde{\mathcal{U}}_x \mathcal{Z} \to \tilde{\mathcal{U}} \) is smooth and \(\tilde{\mathcal{U}}_x \mathcal{Z} \to \tilde{\mathcal{U}}_x \tilde{\mathcal{U}} \) is defined by the vanishing of \(\tilde{t}_1, \ldots, \tilde{t}_m \).
Furthermore, over $\tilde{\mathcal{U}} \subseteq \mathcal{U}$ we have

$$
\tilde{\mathcal{U}} \xrightarrow{\alpha} \mathcal{U} \xrightarrow{\mathcal{X}} \tilde{\mathcal{U}} \xrightarrow{\mathcal{X}} \mathcal{U}
$$

def. by

t_1, \ldots, t_n.

$$
\mathcal{U} \xrightarrow{\mathcal{X}} \mathcal{U} \xrightarrow{\mathcal{X}} \mathcal{U}
$$

\Rightarrow by the Jacobian criterion that $\mathcal{U} \xrightarrow{\mathcal{X}} \tilde{\mathcal{U}}$ is smooth of rel. dim \mathcal{U} (i.e. étale) in a neighborhood of $\tilde{\alpha} \subseteq \tilde{\mathcal{U}}$.

Thus $\mathcal{U} \xrightarrow{\mathcal{X}} \mathcal{X}$ is étale over α.

Examples:
1. G étale group scheme over S

$\Rightarrow BG$ is a DM stack.

2. G smooth group scheme S acting on X. such that the stabilizers of geometric points $g \in X$ are geometrically finite and reduced. (automatic in char 0).

Then $[X/G]$ is a DM stack.

$$
\text{Stab}_x \xrightarrow{\Delta} X \xrightarrow{\Delta} [X/G] \xrightarrow{\Delta} [X/G] \xrightarrow{\Delta} [X/G] \xrightarrow{\Delta} [X/G]
$$

$X_{\Delta} \xrightarrow{\Delta} G \xrightarrow{\Delta} X \xrightarrow{\Delta} X \xrightarrow{\Delta} X$