Calculus 1: Review

- Limits
- Derivatives
- Integrals

Limits

$$
\lim _{x \rightarrow a} f(x)
$$

where $f(x)$ is a formula involving the basic functions.

- Plug in $x=a$.
- Simplify and then plug in $x=a$.
- $0 / 0$ or ∞ / ∞ : Use l'Hôpital.

$$
\lim _{x \rightarrow a} \frac{N(x)}{D(x)}=\lim _{x \rightarrow a} \frac{N^{\prime}(x)}{D^{\prime}(x)}
$$

$-0 \cdot \infty, \infty-\infty, 0^{0}, 1^{\infty}$, or other indeterminate form: manipulate (take log, bring something in the denominator, etc) and use l'Hôpital.

- $f(x)$ is defined piecewise: work on each side and see if you get the same answer on each side.
- Squeeze theorem.

Derivatives

- Derivatives of basic functions.
- Basic rules: sum, product, quotient, chain.
- Chain rule:

$$
\begin{aligned}
f(g(x))^{\prime} & =f^{\prime}(g(x)) g^{\prime}(x) \\
\frac{d y}{d x} & =\frac{d y}{d u} \cdot \frac{d u}{d x}
\end{aligned}
$$

- Implicit differentiation: don't forget $\frac{d y}{d x}$.

$$
x^{3}+y^{3} \rightsquigarrow 3 x^{2}+3 y^{2} \frac{d y}{d x} .
$$

- Logarithmic differentiation:

$$
\begin{aligned}
y & =\text { Complicated product or exponents } \\
\operatorname{In} y & =\text { Sum or product (easier) } \\
\frac{y^{\prime}}{y} & =\text { Derivative of easier expression. }
\end{aligned}
$$

Applications of derivatives

- Basic interpretation

$$
f^{\prime}(a)=\text { Slope of the tangent to } y=f(x) \text { at }(a, f(a))
$$

- Sign of f^{\prime} and direction of f
- $f^{\prime}>0 \Leftrightarrow f$ increasing.
- $f^{\prime}<0 \Leftrightarrow f$ decreasing.
- $f^{\prime}=0 \Leftrightarrow f$ has a critical point.
- Sign of $f^{\prime \prime}$ and concavity of f :
- $f^{\prime \prime}>0 \Leftrightarrow f^{\prime}$ increasing $\Leftrightarrow f$ concave up.
- $f^{\prime \prime}<0 \Leftrightarrow f^{\prime}$ decreasing $\Leftrightarrow f$ concave down.

Applications of derivatives

- Linear approximation: $f(x) \approx f(a)+(x-a) f^{\prime}(a)$, where a is an "easy number" close to x.
- Related rates: find an expression relating different quantities and differentiate the expression.
- Optimization:
- Construct $f(x)$
- Set $f^{\prime}(x)=0$ to get critical points.
- Check critical and end points for closed interval.
- Check sign of f^{\prime} on parts of the domain for non-closed interval.
- Newton's method to solve $f(x)=0$:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Integrals

$$
\int_{a}^{b} f(x) d x
$$

- Find antiderivative $F(x)$. Then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a) .
$$

- Basic (anti)derivatives.
- Basic rule: sum rule (and taking out constant multipliers).

Integrals

- Substitution.
- Find a good $u=$ Function of x.
- Replace $d x$ by $d u /$ Derivative of the function.
- Rewrite the rest in terms of u.
- For definite integrals, also rewrite a and b.

Integrals

$$
\int_{a}^{b} f(x) d x
$$

- Interpretation: (signed) area under $y=f(x)$ from $x=a$ to $x=b$.

$$
A(t)=\int_{a}^{t} f(x) d x \Longrightarrow A^{\prime}(t)=f(t)
$$

Integrals

- For unsigned area between $f(x)$ and $g(x)$:

$$
\int_{a}^{b}|f(x)-g(x)| d x
$$

To evaluate:

- Divide $[a, b]$ in regions where $f(x)-g(x)$ has specific sign.
- First find x 's where $f(x)-g(x)=0$.
- Then find the signs in the intermediat regions.
- On each region, integrate $f(x)-g(x)$ or $g(x)-f(x)$ depending on the sign (positive or negative).
- Average value of $f(x)$ on $[a, b]$

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Integrals

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x, \\
& \text { where } \\
& \Delta x=\frac{b-a}{n} \\
& x_{i}=a+i \Delta x
\end{aligned}
$$

