Practice Problems Final Calculus I - Section 7 and 8 Fall 2011

- **Exercise 1.** 1. Sketch the graph of the function $f(x) = \sqrt{x^2 + x} x$. Explain in detail all the calculations that led to your picture.
 - 2. Sketch the graph of the function $g(x) = 2(\sqrt{x^2 + x} x) + 1$.

Exercise 2. A particle moves along a horizontal line so that its coordinate at time t is $x = \sqrt{b^2 + c^2 t^2}$, $t \ge 0$, where b and c are positive constants.

- 1. Find the velocity and acceleration functions.
- 2. Show that the particle always moves in the positive direction.

Exercise 3. The radius of a sphere is increasing at a rate of 4 mm/s. How fast is the volume increasing when the diameter is 80 mm.

Exercise 4. Sketch the region enclosed by the curves $y = \sin x$, $y = \cos 2x$, x = 0 and $x = \pi/2$, and find its area.

Exercise 5. Evaluate the following limits:

1. $\lim_{x \to 0} \frac{e^x - 1}{\tan x}$, 2. $\lim_{x \to 0} \frac{\tan 4x}{x + \sin 2x}$, 3. $\lim_{x \to 1^-} \left(\frac{1}{x - 1} + \frac{1}{x^2 - 3x + 2}\right)$.

Exercise 6. If f is a continuous function such that

$$\int_{1}^{x} f(t) dt = (x-1)e^{2x} + \int_{1}^{x} e^{-t} f(t) dt$$

for all x, find an explicit formula for f(x).

Exercise 7. Evaluate:

1.
$$\int \sqrt{1+x^2}x^5 dx$$
, 2. $\int_{-1}^{3} 31 + x^2x^5 dx$, 3. $\int \tan x dx$. 4. $\int_{0}^{\pi/2} \tan x dx$.

Exercise 8. Find the area of the largest rectangle that can be inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Exercise 9. Find $\int_{0}^{1} \frac{e^{t}+1}{e^{t}+t} dt$ and use this to evaluate $\int_{0}^{1} \frac{1-t}{e^{t}+t} dt$.

Exercise 10. A cylindrical can without a top is made to contain $V \, cm^3$ of liquid. Find the dimensions that will minimize the cost of the metal to make the can.

Exercise 11. The acceleration of a car $(in m/s^2)$ along a straight road is given by a(t) = 3t - 5 for $0 \le t \le 3$. The instant velocity of the car at time 0 is 8/3 m/s. Find the displacement and the distance traveled in 3 seconds.

Exercise 12. Let $f: [1, 11] \to \mathbb{R}$ be the piecewise defined function:

$$f(x) = \begin{cases} 1 & \text{if } 1 \le x < 2, \\ x - 1 & \text{if } 2 \le x < 4, \\ -2x + 13 & \text{if } 4 \le x < 5, \\ -x + 8 & \text{if } 5 \le x < 9, \\ -1 & \text{if } 9 \le x < 10, \\ x - 11 & \text{if } 10 \le x \le 11. \end{cases}$$

Let $g: [1,11] \to \mathbb{R}$ be defined by $g(x) = \int_{1}^{x} f(t) dt$.

- 1. Is f continuous? Explain why.
- 2. Is f differentiable on [1, 11]? If not, find the points where f is not differentiable.
- 3. Draw the graph of f.
- 4. Evaluate g at x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11.
- 5. On what interval is g increasing? On what interval is g decreasing? Describe the concavity of g. Find all critical points of g and all inflection points of g.
- 6. Sketch the graph of g.

Exercise 13. On what interval is the curve $g(x) = \int_{0}^{x} \frac{t^2}{t^2+t+2} dt$ concave downwards?

Exercise 14. Find the volume common to two spheres, each with radius r if the center of each sphere lies on the surface of the other sphere.

Exercise 15. Find the tangent line to the curve $2(x^2 + y^2)^2 = 25(x^2 - y^2)$ at the point (3,1).

Exercise 16. For what values of x does the graph of $f(x) = e^x - 2x$ have a horizontal tangent?

Exercise 17. Let $f(x) = \ln(x-1) - 1$

- 1. What is the domain and range of f?
- 2. What is the x-intercept of the graph of f?
- 3. Sketch the graph of f.