Practice Problems Final Calculus I - Section 7 and 8
 Fall 2011

Exercise 1. 1. Sketch the graph of the function $f(x)=\sqrt{x^{2}+x}-x$. Explain in detail all the calculations that led to your picture.
2. Sketch the graph of the function $g(x)=2\left(\sqrt{x^{2}+x}-x\right)+1$.

Exercise 2. A particle moves along a horizontal line so that its coordinate at time t is $x=$ $\sqrt{b^{2}+c^{2} t^{2}}, t \geq 0$, where b and c are positive constants.

1. Find the velocity and acceleration functions.
2. Show that the particle always moves in the positive direction.

Exercise 3. The radius of a sphere is increasing at a rate of $4 \mathrm{~mm} / \mathrm{s}$. How fast is the volume increasing when the diameter is 80 mm .

Exercise 4. Sketch the region enclosed by the curves $y=\sin x, y=\cos 2 x, x=0$ and $x=\pi / 2$, and find its area.

Exercise 5. Evaluate the following limits:

1. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\tan x}$,
2. $\lim _{x \rightarrow 0} \frac{\tan 4 x}{x+\sin 2 x}$,
3. $\lim _{x \rightarrow 1^{-}}\left(\frac{1}{x-1}+\frac{1}{x^{2}-3 x+2}\right)$.

Exercise 6. If f is a continuous function such that

$$
\int_{1}^{x} f(t) d t=(x-1) e^{2 x}+\int_{1}^{x} e^{-t} f(t) d t
$$

for all x, find an explicit formula for $f(x)$.
Exercise 7. Evaluate:

1. $\int \sqrt{1+x^{2}} x^{5} d x$,
2. $\int_{-1}^{3} 31+x^{2} x^{5} d x$,
3. $\int \tan x d x$.
4. $\int_{0}^{\pi / 2} \tan x d x$.

Exercise 8. Find the area of the largest rectangle that can be inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Exercise 9. Find $\int_{0}^{1} \frac{e^{t}+1}{e^{t}+t} d t$ and use this to evaluate $\int_{0}^{1} \frac{1-t}{e^{t}+t} d t$.
Exercise 10. A cylindrical can without a top is made to contain $V \mathrm{~cm}^{3}$ of liquid. Find the dimensions that will minimize the cost of the metal to make the can.

Exercise 11. The acceleration of a car (in m / s^{2}) along a straight road is given by $a(t)=3 t-5$ for $0 \leq t \leq 3$. The instant velocity of the car at time 0 is $8 / 3 \mathrm{~m} / \mathrm{s}$. Find the displacement and the distance traveled in 3 seconds.

Exercise 12. Let $f:[1,11] \rightarrow \mathbb{R}$ be the piecewise defined function:

$$
f(x)= \begin{cases}1 & \text { if } 1 \leq x<2 \\ x-1 & \text { if } 2 \leq x<4 \\ -2 x+13 & \text { if } 4 \leq x<5 \\ -x+8 & \text { if } 5 \leq x<9 \\ -1 & \text { if } 9 \leq x<10 \\ x-11 & \text { if } 10 \leq x \leq 11\end{cases}
$$

Let $g:[1,11] \rightarrow \mathbb{R}$ be defined by $g(x)=\int_{1}^{x} f(t) d t$.

1. Is f continuous? Explain why.
2. Is f differentiable on $[1,11]$? If not, find the points where f is not differentiable.
3. Draw the graph of f.
4. Evaluate g at $x=1,2,3,4,5,6,7,8,9,10$ and 11.
5. On what interval is g increasing? On what interval is g decreasing? Describe the concavity of g. Find all critical points of g and all inflection points of g.
6. Sketch the graph of g.

Exercise 13. On what interval is the curve $g(x)=\int_{0}^{x} \frac{t^{2}}{t^{2}+t+2} d t$ concave downwards?
Exercise 14. Find the volume common to two spheres, each with radius r if the center of each sphere lies on the surface of the other sphere.

Exercise 15. Find the tangent line to the curve $2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)$ at the point $(3,1)$.
Exercise 16. For what values of x does the graph of $f(x)=e^{x}-2 x$ have a horizontal tangent?
Exercise 17. Let $f(x)=\ln (x-1)-1$

1. What is the domain and range of f ?
2. What is the x-intercept of the graph of f ?
3. Sketch the graph of f.
