Calculus 1: Practice Midterm 2

April 2, 2015

Name:

- Write your solutions in the space provided. Continue on the back for more space.
- Show your work. Just writing the final answer will receive little credit.
- Partial credit will be given for incomplete work.
- The exam contains 6 problems.
- The last three pages are left blank for scratch work. You may detach them.
- Good luck!

1. Compute the following.
(a) $f^{\prime}(x)$ where $f(x)=\sin (2 x) \ln (x)$.

Solution: By the product and chain rules:

$$
f^{\prime}(x)=2 \cos (2 x) \ln (x)+\frac{\sin (2 x)}{x}
$$

(b) $f^{\prime \prime}(1)$ where $f(x)=e^{3 x}+\frac{1}{x}$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =3 e^{3 x}-x^{-2} \\
f^{\prime \prime}(x) & =9 e^{3 x}+2 x^{-3} \\
f^{\prime \prime}(1) & =9 e^{3}+2
\end{aligned}
$$

2. Below is the graph of the derivative $f^{\prime}(x)$ of a function $f(x)$ defined on $(0,5)$.

(a) What are the critical points of $f(x)$? Which are local minima and which are local maxima?

Solution: The critical points of $f(x)$ are those where $f^{\prime}(x)=0$. These are $x \approx 1.5, x=3$, and $x \approx 4.8$.

	0 to 1.5	1.5 to 3	4 to 4.8	4.8 to 5
Sign of f^{\prime}	+	-	+	-
Direction of f	Inc	Dec	Inc	Dec.

Therefore 1.5 and 4.8 are local maxima and $x=3$ is a local minimum.
(b) Find the inflection points of the graph of $f(x)$.

Solution: The inflection points of $f(x)$ are those where $f^{\prime}(x)$ changes direction (which are the same as the points where $f^{\prime \prime}(x)$ changes sign). They are $x \approx 0.9, x \approx 2$, and $x \approx 4$.
(c) Find an x (any x) at which the graph of $f(x)$ is increasing and concave down.

Solution: Any point between 1 and 1.5 or 4 and 4.8 would work.
3. Calculate

$$
\lim _{x \rightarrow+\infty}\left(1-\frac{1}{x}\right)^{x}
$$

Solution: Let

$$
L=\lim _{x \rightarrow+\infty}\left(1-\frac{1}{x}\right)^{x}
$$

Then

$$
\begin{aligned}
\ln L & =\lim _{x \rightarrow+\infty} x \ln (1-1 / x) \\
& =\lim _{x \rightarrow+\infty} \frac{\ln (1-1 / x)}{1 / x}
\end{aligned}
$$

As $x \rightarrow+\infty$, we have $1 / x \rightarrow 0$ and $\ln (1-1 / x) \rightarrow \ln (1)=0$. So we have a limit of the form " $0 / 0$. ." Applying l'Hôpital's rule:

$$
\begin{aligned}
\ln L & =\lim _{x \rightarrow+\infty} \frac{\frac{1}{1-1 / x} \times \frac{1}{x^{2}}}{\frac{-1}{x^{2}}} \\
& =\frac{-1}{1-1 / x} \\
& =\frac{-1}{1} \\
& =-1 .
\end{aligned}
$$

Since $\ln L=-1$, we get $L=e^{-1}=1 / e$.
4. (10 points) The kinetic energy of an object is given by the formula

$$
K=\frac{1}{2} m v^{2}
$$

where m is its mass and is v its velocity. The standard unit for K is joules, for m is kilograms, and for v is meters per second.
(a) Suppose a rocket of mass 3×10^{6} kilograms is moving at the speed of 5×10^{3} meters per second and is generating kinetic energy at the rate of 60×10^{11} joules per second. At that moment, what the rate of change of its velocity?

Solution: We have the equation

$$
K=\frac{1}{2} m v^{2} .
$$

The mass $m=3 \times 10^{6}$ is constant. Differentiating with respect to time t, we get

$$
\frac{d K}{d t}=m v \frac{d v}{d t} .
$$

We are given that $d K / d t=60 \times 10^{11}$ and $v=5 \times 10^{3}$. So we get

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{1}{m v} \frac{d K}{d t} \\
& =\frac{1}{3 \times 10^{6} \times 5 \times 10^{3}} \times 60 \times 10^{11} \\
& =\frac{1}{15 \times 10^{9}} \times 60 \times 10^{11} \\
& =400
\end{aligned}
$$

So the velocity is changing at the rate of $400 \mathrm{~m} / \mathrm{s}^{2}$.
(b) Use linear approximation to estimate the velocity after 2 seconds.

Solution:

Velocity after 2 seconds \approx Current velocity + Rate of change of velocity $\times 2$

$$
\begin{aligned}
& =5 \times 10^{3}+800 \\
& =5800 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

5. We want to calculate $\sqrt[3]{4}$ using Newton's method. Write a function whose root is $\sqrt[3]{4}$, and execute the first two steps of Newton's method starting with the initial guess $x_{0}=1$.

Solution: $\sqrt[3]{4}$ is a root of $x^{3}-4$. Let $f(x)=x^{3}-4$. So $f^{\prime}(x)=3 x^{2}$.
We know that the steps in Newton's method are computed by

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& =x_{n}-\frac{x_{n}^{3}-4}{3 x_{n}^{2}} .
\end{aligned}
$$

Starting with $x_{0}=1$, we get

$$
\begin{aligned}
& x_{1}=1-\frac{-3}{3}=2 \\
& x_{2}=2-\frac{4}{12}=2-1 / 3=5 / 3
\end{aligned}
$$

So we get an approximation $\sqrt[3]{4} \approx 5 / 3$.
6. Suppose Coca Cola were to design its cylindrical Coke can so that it held $100 \pi \mathrm{ml}$ soda and used the minimum amount of metal. What would be the the radius of the optimum can?

Solution: Let the radius be r and height be h. Then the metal used is given by the total surface area

$$
2 \pi\left(r h+r^{2}\right)
$$

We want the volume to be 100π. So

$$
100 \pi=\pi r^{2} h
$$

We thus get

$$
h=100 / r^{2}
$$

Substituting in the surface area, we get

$$
2 \pi\left(100 / r+r^{2}\right)
$$

We want to minimize this function for $r \in(0,+\infty)$. We may as well minimize

$$
f(r)=\left(100 / r+r^{2}\right)
$$

The critical points are found by setting $f^{\prime}(r)=0$. We get

$$
\begin{aligned}
f^{\prime}(r)=-100 / r^{2}+2 r & =0 \\
2 r & =100 / r^{2} \\
r^{3} & =50 .
\end{aligned}
$$

So $r=\sqrt[3]{50}$ is the only critical point. For $r<\sqrt[3]{50}$, the derivative is negative (plug in $r=1$ in $f^{\prime}(r)$). For $r>\sqrt[3]{50}$, the derivative is positive (plug in $r=10$ or $r=\mathrm{a}$ trillion in $f^{\prime}(r)$). So the function decreases from 0 to $\sqrt[3]{50}$ and increases from $\sqrt[3]{50}$ to $+\infty$. Therefore, it has a global minimum at $\sqrt[3]{50}$.
So the optimal radius is $\sqrt[3]{50}$.
(It comes out to be about 3.6 cm . The actual radius of a coke can is 3.25 cm . Shows that their design choices are not guided solely by the amount of metal used.)

