Calculus 1: Practice Midterm 2

April 2, 2015

Name:

- Write your solutions in the space provided. Continue on the back for more space.
- Show your work. Just writing the final answer will receive little credit.
- Partial credit will be given for incomplete work.
- The exam contains 6 problems.
- The last three pages are left blank for scratch work. You may detach them.
- Good luck!

1. Compute the following.
(a) $f^{\prime}(x)$ where $f(x)=\sin (2 x) \ln (x)$.
(b) $f^{\prime \prime}(1)$ where $f(x)=e^{3 x}+\frac{1}{x}$.
2. Below is the graph of the derivative $f^{\prime}(x)$ of a function $f(x)$ defined on $(0,5)$.

(a) What are the critical points of $f(x)$? Which are local minima and which are local maxima?
(b) Find the inflection points of the graph of $f(x)$.
(c) Find an x (any x) at which the graph of $f(x)$ is increasing and concave down.
3. Calculate

$$
\lim _{x \rightarrow+\infty}\left(1-\frac{1}{x}\right)^{x}
$$

4. (10 points) The kinetic energy of an object is given by the formula

$$
K=\frac{1}{2} m v^{2}
$$

where m is its mass and is v its velocity. The standard unit for K is joules, for m is kilograms, and for v is meters per second.
(a) Suppose a rocket of mass 3×10^{6} kilograms is moving at the speed of 5×10^{3} meters per second and is generating kinetic energy at the rate of 60×10^{11} joules per second. At that moment, what the rate of change of its velocity?
(b) Use linear approximation to estimate the velocity after 2 seconds.
5. We want to calculate $\sqrt[3]{4}$ using Newton's method. Write a function whose root is $\sqrt[3]{4}$, and execute the first two steps of Newton's method starting with the initial guess $x_{0}=1$.
6. Suppose Coca Cola were to design its cylindrical Coke can so that it held $100 \pi \mathrm{ml}$ soda and used the minimum amount of metal. What would be the the radius of the optimum can?

