CALCULUS 1: MIDTERM 1 SOLUTIONS

(1) (a) $f(1)=0.5$ and $\lim _{x \rightarrow 3} f(x)=3$.
(b) Domain $=[0,5]$, range $=[0,4]$
(c) $g(f(2))=3$ and $f(g(2))=4$.
(d)

(2) (a) $f(x)=0.5 x+2.5$.
(b) Let $y=f(x)$. So

$$
\begin{aligned}
& y=0.5 x+2.5 \\
& x=(y-2.5) / 0.5=2 y-5 .
\end{aligned}
$$

Thus, $f^{-1}(x)=2 x-5$.
(c) If the taxi goes at 30 miles per hour for t hours, then the distance covered is $x=30 t$. Substituting in $f(x)$ we get the fare $15 t+2.5$.
(3) (a) We have

$$
\begin{aligned}
& \lim _{x \rightarrow 0+} h(x)=\lim _{x \rightarrow 0+} e^{1-x^{5}}=e \\
& \lim _{x \rightarrow 0-} h(x)=\lim _{x \rightarrow 0+} \arctan \left(1-x^{5}\right)=\arctan (1)=\pi / 4
\end{aligned}
$$

Since $e \neq \pi / 4$, the one sided limits are unequal. Therefore the limit $\lim _{x \rightarrow 0} h(x)$ does not exist.
(b) To find the horizontal asymptotes, we must find the limit of $h(x)$ as $x \rightarrow+\infty$ and $x \rightarrow-\infty$. We have

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} h(x) & =\lim _{x \rightarrow+\infty} e^{1-x^{5}} \\
& =\lim _{t \rightarrow-\infty} e^{t}=0
\end{aligned}
$$

where we let $t=1-x^{5}$ which goes to $-\infty$ as x goes to $+\infty$. Similarly,

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} h(x) & =\lim _{x \rightarrow+\infty} \arctan \left(1-x^{5}\right) \\
& =\lim _{t \rightarrow+\infty} \arctan (t)=\pi / 2
\end{aligned}
$$

where we let $t=1-x^{5}$ which goes to $+\infty$ as x goes to $-\infty$.
Thus, we get the horizontal asymptotes $y=0$ and $y=\pi / 2$.
(4) (a)

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} & \frac{\sqrt{3 x^{4}+1}}{x^{2}+x+1} \\
& =\lim _{x \rightarrow+\infty} \frac{\sqrt{3 x^{4}+1} / x^{2}}{\left(x^{2}+x+1\right) / x^{2}} \\
& =\lim _{x \rightarrow+\infty} \frac{\sqrt{\left(3 x^{4}+1\right) / x^{4}}}{\left(x^{2}+x+1\right) / x^{2}} \\
& =\lim _{x \rightarrow+\infty} \frac{\sqrt{3+1 / x^{4}}}{1+1 / x+1 / x^{2}}
\end{aligned}
$$

$$
=\frac{\sqrt{3+0}}{1+0+0}=\sqrt{3}
$$

(b)

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}-x}+\frac{1}{x^{2}+x}\right) \\
& \quad=\lim _{x \rightarrow 0}\left(\frac{1}{x(x-1)}+\frac{1}{x(x+1)}\right) \\
& \quad=\lim _{x \rightarrow 0}\left(\frac{(x+1)+(x-1)}{x(x-1)(x+1)}\right) \\
& \quad=\lim _{x \rightarrow 0}\left(\frac{2 x}{x(x-1)(x+1)}\right) \\
& \quad=\lim _{x \rightarrow 0}\left(\frac{2}{(x-1)(x+1)}\right) \\
& \quad=\frac{2}{(0-1)(0+1)}=-2
\end{aligned}
$$

(c) We know that

$$
-1 \leq \sin (1 / x) \leq 1
$$

Multiplying by $\ln (1+x)$ for $x>0$, we get
$-\ln (1+x) \leq \ln (1+x) \sin (1 / x) \leq \ln (1+x)$.
Since

$$
\lim _{x \rightarrow 0+}-\ln (1+x)=\lim _{x \rightarrow 0+} \ln (1+x)=\ln (1)=0
$$

the squeeze theorem tells us that

$$
\lim _{x \rightarrow 0^{+}} \ln (1+x) \sin (1 / x)=0
$$

(d)

$$
\begin{aligned}
\lim _{x \rightarrow 0} & \frac{e^{2 x}-1}{e^{x}-1} \\
& =\lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right)\left(e^{x}+1\right)}{e^{x}-1} \\
& =\lim _{x \rightarrow 0}\left(e^{x}+1\right) \\
& =e^{0}+1=2 .
\end{aligned}
$$

(5) (a) From the definition of the derivative,

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{\frac{x+1}{x-1}-\frac{4}{2}}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{\frac{x+1}{x-1}-2}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{\frac{x+1-2 x+2}{x-1}}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{3-x}{(x-1)(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{-1}{(x-1)}=\frac{-1}{2} .
\end{aligned}
$$

(b) Since $f^{\prime}(3)<0$, the tangent point downwards and hence $f(x)$ is decreasing near $x=3$.
(1) (a) $f(3)=2$ and $\lim _{x \rightarrow 4} f(x)=2.5$.
(b) Domain $=[0,5]$, range $=[0,3]$
(c) $g(f(2))=3$ and $f(g(2))=3$.
(d)

(2) (a) $f(x)=0.5 x+3.5$.
(b) Let $y=f(x)$. So

$$
\begin{aligned}
& y=0.5 x+3.5 \\
& x=(y-3.5) / 0.5=2 y-7 .
\end{aligned}
$$

Thus, $f^{-1}(x)=2 x-7$.
(c) If the taxi goes at 20 miles per hour for t hours, then the distance covered is $x=20 t$. Substituting in $f(x)$ we get the fare $10 t+3.5$.
(3) (a) We have

$$
\begin{aligned}
& \lim _{x \rightarrow 0+} h(x)=\lim _{x \rightarrow 0+} e^{2-x^{3}}=e^{2} \\
& \lim _{x \rightarrow 0-} h(x)=\lim _{x \rightarrow 0+} \arctan \left(2-x^{3}\right)=\arctan (2) \approx 1.1
\end{aligned}
$$

Since $e^{2} \neq \arctan (2)$, the one sided limits are unequal. Therefore the limit $\lim _{x \rightarrow 0} h(x)$ does not exist.
(b) To find the horizontal asymptotes, we must find the limit of $h(x)$ as $x \rightarrow+\infty$ and $x \rightarrow-\infty$. We have

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} h(x) & =\lim _{x \rightarrow+\infty} e^{2-x^{3}} \\
& =\lim _{t \rightarrow-\infty} e^{t}=0,
\end{aligned}
$$

where we let $t=2-x^{3}$ which goes to $-\infty$ as x goes to $+\infty$. Similarly,

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} h(x) & =\lim _{x \rightarrow+\infty} \arctan \left(2-x^{3}\right) \\
& =\lim _{t \rightarrow+\infty} \arctan (t)=\pi / 2,
\end{aligned}
$$

where we let $t=2-x^{3}$ which goes to $+\infty$ as x goes to $-\infty$.
Thus, we get the horizontal asymptotes $y=0$ and $y=\pi / 2$.
(4) (a)

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} & \frac{\sqrt{x^{4}+1}}{3 x^{2}+x+1} \\
& =\lim _{x \rightarrow+\infty} \frac{\sqrt{x^{4}+1} / x^{2}}{\left(3 x^{2}+x+1\right) / x^{2}} \\
& =\lim _{x \rightarrow+\infty} \frac{\sqrt{\left(x^{4}+1\right) / x^{4}}}{\left(3 x^{2}+x+1\right) / x^{2}} \\
& =\lim _{x \rightarrow+\infty} \frac{\sqrt{1+1 / x^{4}}}{3+1 / x+1 / x^{2}}
\end{aligned}
$$

$$
=\frac{\sqrt{1+0}}{3+0+0}=\frac{1}{3}
$$

(b) We know that

$$
-1 \leq \sin (1 / x) \leq 1
$$

Multiplying by $\ln (1+x)$ for $x>0$, we get $-\ln (1+x) \leq \ln (1+x) \sin (1 / x) \leq \ln (1+x)$.

Since
$\lim _{x \rightarrow 0+}-\ln (1+x)=\lim _{x \rightarrow 0+} \ln (1+x)=\ln (1)=0$,
the squeeze theorem tells us that

$$
\lim _{x \rightarrow 0^{+}} \ln (1+x) \sin (1 / x)=0
$$

(c)

$$
\begin{aligned}
\lim _{x \rightarrow 0} & \left(\frac{1}{x^{2}+x}+\frac{1}{x^{2}-x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{1}{x(x+1)}+\frac{1}{x(x-1)}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{(x-1)+(x+1)}{x(x+1)(x-1)}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{2 x}{x(x+1)(x-1)}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{2}{(x+1)(x-1)}\right) \\
& =\frac{2}{(0+1)(0-1)}=-2 .
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{3^{2 x}-1}{3^{x}-1} \\
& \quad=\lim _{x \rightarrow 0} \frac{\left(3^{x}-1\right)\left(3^{x}+1\right)}{3^{x}-1} \\
& \quad=\lim _{x \rightarrow 0}\left(3^{x}+1\right) \\
& \quad=3^{0}+1=2 .
\end{aligned}
$$

(5) (a) From the definition of the derivative,

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{\frac{x-1}{x+1}-\frac{2}{4}}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{\frac{x-1}{x+1}-\frac{1}{2}}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{\frac{2 x-2-x-1}{2(x+1)}}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{x-3}{2(x+1)(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{1}{2(x+1)}=\frac{1}{8} .
\end{aligned}
$$

(b) Since $f^{\prime}(3)>0$, the tangent point upwards and hence $f(x)$ is increasing near $x=3$.

