CALCULUS 1: MIDTERM 1 SOLUTIONS

(1) (@ f(1)=0.5andlim,_,5f(x)=3.
(b) Domain = [0,5], range = [ 4]

(@) g(f(2))=3and f(g(2) =

@

(2) (@ f(x)=0.5x+2.5.
(b) Let y = f(x). So

y=0.5x+2.5
x=(y—2.5)/0.5=2y —5.

Thus, f ~}(x) =2x — 5.

(c) If the taxi goes at 30 miles per hour for ¢t hours,
then the distance covered is x = 30t. Substituting
in f(x) we get the fare 15t + 2.5.

(3) (a) We have

lim hA(x)= lim el =

x—0+ x—0+

lim h(x)= lim arctan(1 — x°) = arctan(1) = /4
x—0— x—0+

Since e # 7/4, the one sided limits are unequal.
Therefore the limit lim,_,, h(x) does not exist.

(b) To find the horizontal asymptotes, we must find the
limit of h(x) as x — +00 and x — —oco. We have

.5
lim h(x)= lim e'™
xX—-400 xX—400
= lim ' =0,
t——00

where we let t = 1— x> which goes to —co as x goes
to +o00. Similarly,
lim h(x)= hm arctan(1 — x°)
X—>—00

= hm arctan(t) = /2,
t—+00

where we let t = 1—x° which goes to +00 as x goes

to —00.
Thus, we get the horizontal asymptotes y = 0 and
y=m/2.
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(b)

15

Il
g
L5

x(x — 1)(x + 1))

Il
><.—-

(x - 1)(x + 1))
=-2.

I
lB

(0 1)(0 +1)
(¢) We know that

—1 <sin(1/x) <1.
Multiplying by In(1 + x) for x > 0, we get
—In(1+x) <In(1+ x)sin(1/x) < In(1 + x).
Since
xlirglJr —In(14+x)= xlir&ln(l +x)=1In(1)=0,
the squeeze theorem tells us that
xlir{)1+ In(1+ x)sin(1/x)=0
(d
e —1

i
x—0e¥ —1

. (e"=1)(e*+1)
=lim—=
x—0 eX—1
= lim(e* +1)
x—0

=el+1=2.

(5) (a) From the definition of the derivative,

o )= F(3)
e ===

x+1-2x+2

. 1
= lim —
x—=3 x—3

3—x
S oD -3
-1 -1
;chS (x—1) T2
(b) Since f’(3) < 0, the tangent point downwards and
hence f(x) is decreasing near x = 3.
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(5) (a) From the definition of the derivative,
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(b) Since f’(3) > 0, the tangent point upwards and
hence f (x) is increasing near x = 3.



