1. (a)


The tangent line at $x=1$ intersects the $x$-axis at $x \approx 2.3$, so $x_{2} \approx 2.3$. The tangent line at $x=2.3$ intersects the $x$-axis at $x \approx 3$, so $x_{3} \approx 3.0$.
(b) $x_{1}=5$ would not be a better first approximation than $x_{1}=1$ since the tangent line is nearly horizontal. In fact, the second approximation for $x_{1}=5$ appears to be to the left of $x=1$.
4. (a)


If $x_{1}=0$, then $x_{2}$ is negative, and $x_{3}$ is even more negative. The sequence of approximations does not converge, that is, Newton's method fails.
(c)


If $x_{1}=3$, then $x_{2}=1$ and we have the same situation as in part (b). Newton's method fails again.
(b)


If $x_{1}=1$, the tangent line is horizontal and Newton's method fails.
(d)


If $x_{1}=4$, the tangent line is horizontal and Newton's method fails.
(e)


If $x_{1}=5$, then $x_{2}$ is greater than $6, x_{3}$ gets closer to 6 , and the sequence of approximations converges to 6 . Newton's method succeeds!
12. $f(x)=x^{100}-100 \Rightarrow f^{\prime}(x)=100 x^{99}$, so $x_{n+1}=x_{n}-\frac{x_{n}^{100}-100}{100 x_{n}^{99}}$. We need to find approximations until they agree to eight decimal places. $x_{1}=1.05 \quad \Rightarrow \quad x_{2} \approx 1.04748471, x_{3} \approx 1.04713448, x_{4} \approx 1.04712855 \approx x_{5}$.

So $\sqrt[100]{100} \approx 1.04712855$, to eight decimal places.

## Page 1

30. (a) $f(x)=\frac{1}{x}-a \Rightarrow f^{\prime}(x)=-\frac{1}{x^{2}}$, so $x_{n+1}=x_{n}-\frac{1 / x_{n}-a}{-1 / x_{n}^{2}}=x_{n}+x_{n}-a x_{n}^{2}=2 x_{n}-a x_{n}^{2}$.
(b) Using (a) with $a=1.6894$ and $x_{1}=\frac{1}{2}=0.5$, we get $x_{2}=0.5754, x_{3} \approx 0.588485$, and $x_{4} \approx 0.588789 \approx x_{5}$. So $1 / 1.6984 \approx 0.588789$.
31. $f(x)=\frac{1}{2} x^{2}-2 x+6 \Rightarrow F(x)=\frac{1}{2} \frac{x^{3}}{3}-2 \frac{x^{2}}{2}+6 x+C=\frac{1}{6} x^{3}-x^{2}+6 x+C$
32. $f(x)=8 x^{9}-3 x^{6}+12 x^{3} \Rightarrow F(x)=8\left(\frac{1}{10} x^{10}\right)-3\left(\frac{1}{7} x^{7}\right)+12\left(\frac{1}{4} x^{4}\right)+C=\frac{4}{5} x^{10}-\frac{3}{7} x^{7}+3 x^{4}+C$
33. $f(t)=\frac{3 t^{4}-t^{3}+6 t^{2}}{t^{4}}=3-\frac{1}{t}+\frac{6}{t^{2}}$ has domain $(-\infty, 0) \cup(0, \infty)$, so $F(t)= \begin{cases}3 t-\ln |t|-\frac{6}{t}+C_{1} & \text { if } t<0 \\ 3 t-\ln |t|-\frac{6}{t}+C_{2} & \text { if } t>0\end{cases}$ See Example 1(b) for a similar problem.
34. $f(x)=\frac{2+x^{2}}{1+x^{2}}=\frac{1+\left(1+x^{2}\right)}{1+x^{2}}=\frac{1}{1+x^{2}}+1 \quad \Rightarrow \quad F(x)=\tan ^{-1} x+x+C$
35. We know right away that $c$ cannot be $f$ 's antiderivative, since the slope of $c$ is not zero at the $x$-value where $f=0$. Now $f$ is positive when $a$ is increasing and negative when $a$ is decreasing, so $a$ is the antiderivative of $f$.
36. 



The graph of $F$ must start at $(0,1)$. Where the given graph, $y=f(x)$, has a local minimum or maximum, the graph of $F$ will have an inflection point. Where $f$ is negative (positive), $F$ is decreasing (increasing).

Where $f$ changes from negative to positive, $F$ will have a minimum. Where $f$ changes from positive to negative, $F$ will have a maximum. Where $f$ is decreasing (increasing), $F$ is concave downward (upward).
65. (a) We first observe that since the stone is dropped 450 m above the ground, $v(0)=0$ and $s(0)=450$. $v^{\prime}(t)=a(t)=-9.8 \Rightarrow v(t)=-9.8 t+C$. Now $v(0)=0 \Rightarrow C=0$, so $v(t)=-9.8 t \Rightarrow$ $s(t)=-4.9 t^{2}+D$ Last, $s(0)=450 \Rightarrow D=450 \Rightarrow s(t)=450-4.9 t^{2}$.
(b) The stone reaches the ground when $s(t)=0.450-4.9 t^{2}=0 \Rightarrow t^{2}=450 / 4.9 \Rightarrow t_{1}=\sqrt{450 / 4.9} \approx 9.58 \mathrm{~s}$.
(c) The velocity with which the stone strikes the ground is $v\left(t_{1}\right)=-9.8 \sqrt{450 / 4.9} \approx-93.9 \mathrm{~m} / \mathrm{s}$.
(d) This is just reworking parts (a) and (b) with $v(0)=-5$. Using $v(t)=-9.8 t+C, v(0)=-5 \Rightarrow 0+C=-5 \Rightarrow$ $v(t)=-9.8 t-5$. So $s(t)=-4.9 t^{2}-5 t+D$ and $s(0)=450 \Rightarrow D=450 \quad \Rightarrow \quad s(t)=-4.9 t^{2}-5 t+450$. Solving $s(t)=0$ by using the quadratic formula gives us $t=(5 \pm \sqrt{8845}) /(-9.8) \Rightarrow t_{1} \approx 9.09 \mathrm{~s}$.
73. Taking the upward direction to be positive we have that for $0 \leq t \leq 10$ (using the subscript 1 to refer to $0 \leq t \leq 10$ ),
$a_{1}(t)=-(9-0.9 t)=v_{1}^{\prime}(t) \Rightarrow v_{1}(t)=-9 t+0.45 t^{2}+v_{0}$, but $v_{1}(0)=v_{0}=-10 \Rightarrow$
$v_{1}(t)=-9 t+0.45 t^{2}-10=s_{1}^{\prime}(t) \Rightarrow s_{1}(t)=-\frac{9}{2} t^{2}+0.15 t^{3}-10 t+s_{0}$. But $s_{1}(0)=500=s_{0} \Rightarrow$
$s_{1}(t)=-\frac{9}{2} t^{2}+0.15 t^{3}-10 t+500 . s_{1}(10)=-450+150-100+500=100$, so it takes
more than 10 seconds for the raindrop to fall. Now for $t>10, a(t)=0=v^{\prime}(t) \Rightarrow$
$v(t)=$ constant $=v_{1}(10)=-9(10)+0.45(10)^{2}-10=-55 \quad \Rightarrow \quad v(t)=-55$.
At $55 \mathrm{~m} / \mathrm{s}$, it will take $100 / 55 \approx 1.8 \mathrm{~s}$ to fall the last 100 m . Hence, the total time is $10+\frac{100}{55}=\frac{130}{11} \approx 11.8 \mathrm{~s}$.
2. $f(x)=x \sqrt{1-x},[-1,1] . \quad f^{\prime}(x)=x \cdot \frac{1}{2}(1-x)^{-1 / 2}(-1)+(1-x)^{1 / 2}(1)=(1-x)^{-1 / 2}\left[-\frac{1}{2} x+(1-x)\right]=\frac{1-\frac{3}{2} x}{\sqrt{1-x}}$. $f^{\prime}(x)=0 \Rightarrow x=\frac{2}{3} . \quad f^{\prime}(x)$ does not exist $\Leftrightarrow x=1 . \quad f^{\prime}(x)>0$ for $-1<x<\frac{2}{3}$ and $f^{\prime}(x)<0$ for $\frac{2}{3}<x<1$, so $f\left(\frac{2}{3}\right)=\frac{2}{3} \sqrt{\frac{1}{3}}=\frac{2}{9} \sqrt{3}[\approx 0.38]$ is a local maximum value. Checking the endpoints, we find $f(-1)=-\sqrt{2}$ and $f(1)=0$. Thus, $f(-1)=-\sqrt{2}$ is the absolute minimum value and $f\left(\frac{2}{3}\right)=\frac{2}{9} \sqrt{3}$ is the absolute maximum value.
14. $y=(\tan x)^{\cos x} \Rightarrow \ln y=\cos x \ln \tan x$, so
$\lim _{x \rightarrow(\pi / 2)^{-}} \ln y=\lim _{x \rightarrow(\pi / 2)^{-}} \frac{\ln \tan x}{\sec x} \stackrel{H}{=} \lim _{x \rightarrow(\pi / 2)^{-}} \frac{(1 / \tan x) \sec ^{2} x}{\sec x \tan x}=\lim _{x \rightarrow(\pi / 2)^{-}} \frac{\sec x}{\tan ^{2} x}=\lim _{x \rightarrow(\pi / 2)^{-}} \frac{\cos x}{\sin ^{2} x}=\frac{0}{1^{2}}=0$,
so $\lim _{x \rightarrow(\pi / 2)^{-}}(\tan x)^{\cos x}=\lim _{x \rightarrow(\pi / 2)^{-}} e^{\ln y}=e^{0}=1$.
30. $y=f(x)=4 x-\tan x,-\frac{\pi}{2}<x<\frac{\pi}{2}$
A. $D=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
B. $y$-intercept $=f(0)=0$
C. $f(-x)=-f(x)$, so the curve is symmetric about $(0,0)$. D. $\lim _{x \rightarrow \pi / 2^{-}}(4 x-\tan x)=-\infty, \lim _{x \rightarrow-\pi / 2^{+}}(4 x-\tan x)=\infty$, so $x=\frac{\pi}{2}$ and $x=-\frac{\pi}{2}$ are VA. E. $f^{\prime}(x)=4-\sec ^{2} x>0 \Leftrightarrow \sec x<2 \Leftrightarrow \cos x>\frac{1}{2} \Leftrightarrow-\frac{\pi}{3}<x<\frac{\pi}{3}$, so $f$ is increasing on $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ and decreasing on $\left(-\frac{\pi}{2},-\frac{\pi}{3}\right)$ and $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$. F. $f\left(\frac{\pi}{3}\right)=\frac{4 \pi}{3}-\sqrt{3}$ is a local maximum value, $f\left(-\frac{\pi}{3}\right)=\sqrt{3}-\frac{4 \pi}{3}$ is a local minimum value.
G. $f^{\prime \prime}(x)=-2 \sec ^{2} x \tan x>0 \Leftrightarrow \tan x<0 \Leftrightarrow-\frac{\pi}{2}<x<0$, so $f$ is CU on $\left(-\frac{\pi}{2}, 0\right)$ and CD on $\left(0, \frac{\pi}{2}\right)$. IP at $(0,0)$
H.

77. Choosing the positive direction to be upward, we have $a(t)=-9.8 \Rightarrow v(t)=-9.8 t+v_{0}$, but $v(0)=0=v_{0} \Rightarrow$ $v(t)=-9.8 t=s^{\prime}(t) \Rightarrow s(t)=-4.9 t^{2}+s_{0}$, but $s(0)=s_{0}=500 \Rightarrow s(t)=-4.9 t^{2}+500$. When $s=0$, $-4.9 t^{2}+500=0 \Rightarrow t_{1}=\sqrt{\frac{500}{4.9}} \approx 10.1 \Rightarrow v\left(t_{1}\right)=-9.8 \sqrt{\frac{500}{4.9}} \approx-98.995 \mathrm{~m} / \mathrm{s}$. Since the canister has been designed to withstand an impact velocity of $100 \mathrm{~m} / \mathrm{s}$, the canister will not burst.
79. (a)


The cross-sectional area of the rectangular beam is

$$
A=2 x \cdot 2 y=4 x y=4 x \sqrt{100-x^{2}}, 0 \leq x \leq 10, \text { so }
$$

$$
\frac{d A}{d x}=4 x\left(\frac{1}{2}\right)\left(100-x^{2}\right)^{-1 / 2}(-2 x)+\left(100-x^{2}\right)^{1 / 2} \cdot 4
$$

$$
=\frac{-4 x^{2}}{\left(100-x^{2}\right)^{1 / 2}}+4\left(100-x^{2}\right)^{1 / 2}=\frac{4\left[-x^{2}+\left(100-x^{2}\right)\right]}{\left(100-x^{2}\right)^{1 / 2}}
$$

$$
\frac{d A}{d x}=0 \text { when }-x^{2}+\left(100-x^{2}\right)=0 \Rightarrow x^{2}=50 \Rightarrow x=\sqrt{50} \approx 7.07 \Rightarrow y=\sqrt{100-(\sqrt{50})^{2}}=\sqrt{50}
$$

Since $A(0)=A(10)=0$, the rectangle of maximum area is a square.
(b)


The cross-sectional area of each rectangular plank (shaded in the figure) is

$$
\begin{aligned}
& A=2 x(y-\sqrt{50})=2 x\left[\sqrt{100-x^{2}}-\sqrt{50}\right], 0 \leq x \leq \sqrt{50}, \text { so } \\
& \begin{aligned}
\frac{d A}{d x} & =2\left(\sqrt{100-x^{2}}-\sqrt{50}\right)+2 x\left(\frac{1}{2}\right)\left(100-x^{2}\right)^{-1 / 2}(-2 x) \\
& =2\left(100-x^{2}\right)^{1 / 2}-2 \sqrt{50}-\frac{2 x^{2}}{\left(100-x^{2}\right)^{1 / 2}}
\end{aligned}
\end{aligned}
$$

Set $\frac{d A}{d x}=0:\left(100-x^{2}\right)-\sqrt{50}\left(100-x^{2}\right)^{1 / 2}-x^{2}=0 \Rightarrow 100-2 x^{2}=\sqrt{50}\left(100-x^{2}\right)^{1 / 2} \Rightarrow$ $10,000-400 x^{2}+4 x^{4}=50\left(100-x^{2}\right) \Rightarrow 4 x^{4}-350 x^{2}+5000=0 \Rightarrow 2 x^{4}-175 x^{2}+2500=0 \Rightarrow$ $x^{2}=\frac{175 \pm \sqrt{10,625}}{4} \approx 69.52$ or $17.98 \Rightarrow x \approx 8.34$ or 4.24 . But $8.34>\sqrt{50}$, so $x_{1} \approx 4.24 \Rightarrow$ $y-\sqrt{50}=\sqrt{100-x_{1}^{2}}-\sqrt{50} \approx 1.99$. Each plank should have dimensions about $8 \frac{1}{2}$ inches by 2 inches.
(c) From the figure in part (a), the width is $2 x$ and the depth is $2 y$, so the strength is $S=k(2 x)(2 y)^{2}=8 k x y^{2}=8 k x\left(100-x^{2}\right)=800 k x-8 k x^{3}, 0 \leq x \leq 10 . d S / d x=800 k-24 k x^{2}=0$ when $24 k x^{2}=800 k \Rightarrow x^{2}=\frac{100}{3} \Rightarrow x=\frac{10}{\sqrt{3}} \Rightarrow y=\sqrt{\frac{200}{3}}=\frac{10 \sqrt{2}}{\sqrt{3}}=\sqrt{2} x$. Since $S(0)=S(10)=0$, the maximum strength occurs when $x=\frac{10}{\sqrt{3}}$. The dimensions should be $\frac{20}{\sqrt{3}} \approx 11.55$ inches by $\frac{20 \sqrt{2}}{\sqrt{3}} \approx 16.33$ inches.
84. (a) $V^{\prime}(t)$ is the rate of change of the volume of the water with respect to time. $H^{\prime}(t)$ is the rate of change of the height of the water with respect to time. Since the volume and the height are increasing, $V^{\prime}(t)$ and $H^{\prime}(t)$ are positive.
(b) $V^{\prime}(t)$ is constant, so $V^{\prime \prime}(t)$ is zero (the slope of a constant function is 0 ).
(c) At first, the height $H$ of the water increases quickly because the tank is narrow. But as the sphere widens, the rate of increase of the height slows down, reaching a minimum at $t=t_{2}$. Thus, the height is increasing at a decreasing rate on $\left(0, t_{2}\right)$, so its graph is concave downward and $H^{\prime \prime}\left(t_{1}\right)<0$. As the sphere narrows for $t>t_{2}$, the rate of increase of the height begins to increase, and the graph of $H$ is concave upward. Therefore, $H^{\prime \prime}\left(t_{2}\right)=0$ and $H^{\prime \prime}\left(t_{3}\right)>0$.

## Page 5

