2. (a) $\lim _{x \rightarrow a}[f(x) p(x)]$ is an indeterminate form of type $0 \cdot \infty$.
(b) When x is near $a, p(x)$ is large and $h(x)$ is near 1 , so $h(x) p(x)$ is large. Thus, $\lim _{x \rightarrow a}[h(x) p(x)]=\infty$.
(c) When x is near $a, p(x)$ and $q(x)$ are both large, so $p(x) q(x)$ is large. Thus, $\lim _{x \rightarrow a}[p(x) q(x)]=\infty$.
3. (a) $\lim _{x \rightarrow a}[f(x)]^{g(x)}$ is an indeterminate form of type 0^{0}.
(b) If $y=[f(x)]^{p(x)}$, then $\ln y=p(x) \ln f(x)$. When x is near $a, p(x) \rightarrow \infty$ and $\ln f(x) \rightarrow-\infty$, so $\ln y \rightarrow-\infty$. Therefore, $\lim _{x \rightarrow a}[f(x)]^{p(x)}=\lim _{x \rightarrow a} y=\lim _{x \rightarrow a} e^{\ln y}=0$, provided f^{p} is defined.
(c) $\lim _{x \rightarrow a}[h(x)]^{p(x)}$ is an indeterminate form of type 1^{∞}.
(d) $\lim _{x \rightarrow a}[p(x)]^{f(x)}$ is an indeterminate form of type ∞^{0}.
(e) If $y=[p(x)]^{q(x)}$, then $\ln y=q(x) \ln p(x)$. When x is near $a, q(x) \rightarrow \infty$ and $\ln p(x) \rightarrow \infty$, so $\ln y \rightarrow \infty$. Therefore, $\lim _{x \rightarrow a}[p(x)]^{q(x)}=\lim _{x \rightarrow a} y=\lim _{x \rightarrow a} e^{\ln y}=\infty$.
(f) $\lim _{x \rightarrow a} \sqrt[q(x)]{p(x)}=\lim _{x \rightarrow a}[p(x)]^{1 / q(x)}$ is an indeterminate form of type ∞^{0}.
4. From the graphs of f and g, we see that $\lim _{x \rightarrow 2} f(x)=0$ and $\lim _{x \rightarrow 2} g(x)=0$, so l'Hospital's Rule applies.
$\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 2} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{\lim _{x \rightarrow 2} f^{\prime}(x)}{\lim _{x \rightarrow 2} g^{\prime}(x)}=\frac{f^{\prime}(2)}{g^{\prime}(2)}=\frac{1.5}{-1}=-\frac{3}{2}$
5. This limit has the form $\frac{0}{0} . \lim _{x \rightarrow 0} \frac{\sin 4 x}{\tan 5 x} \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{4 \cos 4 x}{5 \sec ^{2}(5 x)}=\frac{4(1)}{5(1)^{2}}=\frac{4}{5}$
6. This limit has the form $\frac{0}{0}$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x-\sin x}{x-\tan x} & \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{1-\cos x}{1-\sec ^{2} x} \stackrel{\text { H }}{=} \lim _{x \rightarrow 0} \frac{-(-\sin x)}{-2 \sec x(\sec x \tan x)}=-\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x\left(\frac{\cos x}{\sin x}\right)}{\sec ^{2} x} \\
& =-\frac{1}{2} \lim _{x \rightarrow 0} \cos ^{3} x=-\frac{1}{2}(1)^{3}=-\frac{1}{2}
\end{aligned}
$$

Another method is to write the limit as $\lim _{x \rightarrow 0} \frac{1-\frac{\sin x}{x}}{1-\frac{\tan x}{x}}$.
41. This limit has the form $\infty \cdot 0$. We'll change it to the form $\frac{0}{0}$.
$\lim _{x \rightarrow \infty} x \sin (\pi / x)=\lim _{x \rightarrow \infty} \frac{\sin (\pi / x)}{1 / x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{\cos (\pi / x)\left(-\pi / x^{2}\right)}{-1 / x^{2}}=\pi \lim _{x \rightarrow \infty} \cos (\pi / x)=\pi(1)=\pi$
55. $y=x^{\sqrt{x}} \Rightarrow \ln y=\sqrt{x} \ln x$, so

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \sqrt{x} \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-1 / 2}} \stackrel{H}{=} \lim _{x \rightarrow 0^{+}} \frac{1 / x}{-\frac{1}{2} x^{-3 / 2}}=-2 \lim _{x \rightarrow 0^{+}} \sqrt{x}=0 \Rightarrow \\
& \lim _{x \rightarrow 0^{+}} x^{\sqrt{x}}=\lim _{x \rightarrow 0^{+}} e^{\ln y}=e^{0}=1 .
\end{aligned}
$$

61. $y=x^{1 / x} \Rightarrow \ln y=(1 / x) \ln x \Rightarrow \lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{\ln x}{x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{1 / x}{1}=0 \Rightarrow$

$$
\lim _{x \rightarrow \infty} x^{1 / x}=\lim _{x \rightarrow \infty} e^{\ln y}=e^{0}=1
$$

72. This limit has the form $\frac{\infty}{\infty}$. $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{p}} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{1 / x}{p x^{p-1}}=\lim _{x \rightarrow \infty} \frac{1}{p x^{p}}=0$ since $p>0$.
73. $\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{1}{\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}(2 x)}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x}$. Repeated applications of 1'Hospital's Rule result in the original limit or the limit of the reciprocal of the function. Another method is to try dividing the numerator and denominator
by $x: \lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}=\lim _{x \rightarrow \infty} \frac{x / x}{\sqrt{x^{2} / x^{2}+1 / x^{2}}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+1 / x^{2}}}=\frac{1}{1}=1$
74. Call the two numbers x and y. Then $x+y=16$, so $y=16-x$. Call the sum of their squares S. Then

$$
S=x^{2}+y^{2}=x^{2}+(16-x)^{2} \Rightarrow S^{\prime}=2 x+2(16-x)(-1)=2 x-32+2 x=4 x-32 \cdot S^{\prime}=0 \Rightarrow x=8 .
$$

Since $S^{\prime}(x)<0$ for $0<x<8$ and $S^{\prime}(x)>0$ for $x>8$, there is an absolute minimum at $x=8$. Thus, $y=16-8=8$ and $S=8^{2}+8^{2}=128$.
8. If the rectangle has dimensions x and y, then its area is $x y=1000 \mathrm{~m}^{2}$, so $y=1000 / x$. The perimeter $P=2 x+2 y=2 x+2000 / x$. We wish to minimize the function $P(x)=2 x+2000 / x$ for $x>0$. $P^{\prime}(x)=2-2000 / x^{2}=\left(2 / x^{2}\right)\left(x^{2}-1000\right)$, so the only critical number in the domain of P is $x=\sqrt{1000}$. $P^{\prime \prime}(x)=4000 / x^{3}>0$, so P is concave upward throughout its domain and $P(\sqrt{1000})=4 \sqrt{1000}$ is an absolute minimum value. The dimensions of the rectangle with minimal perimeter are $x=y=\sqrt{1000}=10 \sqrt{10} \mathrm{~m}$. (The rectangle is a square.)
10. We need to maximize P for $I \geq 0 . \quad P(I)=\frac{100 I}{I^{2}+I+4} \Rightarrow$ $P^{\prime}(I)=\frac{\left(I^{2}+I+4\right)(100)-100 I(2 I+1)}{\left(I^{2}+I+4\right)^{2}}=\frac{100\left(I^{2}+I+4-2 I^{2}-I\right)}{\left(I^{2}+I+4\right)^{2}}=\frac{-100\left(I^{2}-4\right)}{\left(I^{2}+I+4\right)^{2}}=\frac{-100(I+2)(I-2)}{\left(I^{2}+I+4\right)^{2}}$. $P^{\prime}(I)>0$ for $0<I<2$ and $P^{\prime}(I)<0$ for $I>2$. Thus, P has an absolute maximum of $P(2)=20$ at $I=2$.
11. (a)

The areas of the three figures are $12,500,12,500$, and $9000 \mathrm{ft}^{2}$. There appears to be a maximum area of at least $12,500 \mathrm{ft}^{2}$.
(b) Let x denote the length of each of two sides and three dividers.

Let y denote the length of the other two sides.
(c) Area $A=$ length \times width $=y \cdot x$
(d) Length of fencing $=750 \Rightarrow 5 x+2 y=750$

(e) $5 x+2 y=750 \Rightarrow y=375-\frac{5}{2} x \quad \Rightarrow \quad A(x)=\left(375-\frac{5}{2} x\right) x=375 x-\frac{5}{2} x^{2}$
(f) $A^{\prime}(x)=375-5 x=0 \Rightarrow x=75$. Since $A^{\prime \prime}(x)=-5<0$ there is an absolute maximum when $x=75$. Then $y=\frac{375}{2}=187.5$. The largest area is $75\left(\frac{375}{2}\right)=14,062.5 \mathrm{ft}^{2}$. These values of x and y are between the values in the first and second figures in part (a). Our original estimate was low.
23.

The area of the rectangle is $(2 x)(2 y)=4 x y$. Also $r^{2}=x^{2}+y^{2}$ so
$y=\sqrt{r^{2}-x^{2}}$, so the area is $A(x)=4 x \sqrt{r^{2}-x^{2}}$. Now
$A^{\prime}(x)=4\left(\sqrt{r^{2}-x^{2}}-\frac{x^{2}}{\sqrt{r^{2}-x^{2}}}\right)=4 \frac{r^{2}-2 x^{2}}{\sqrt{r^{2}-x^{2}}}$. The critical number is $x=\frac{1}{\sqrt{2}} r$. Clearly this gives a maximum.
$y=\sqrt{r^{2}-\left(\frac{1}{\sqrt{2}} r\right)^{2}}=\sqrt{\frac{1}{2} r^{2}}=\frac{1}{\sqrt{2}} r=x$, which tells us that the rectangle is a square. The dimensions are $2 x=\sqrt{2} r$ and $2 y=\sqrt{2} r$.
34.

$x y=180$, so $y=180 / x$. The printed area is
$(x-2)(y-3)=(x-2)(180 / x-3)=186-3 x-360 / x=A(x)$.
$A^{\prime}(x)=-3+360 / x^{2}=0$ when $x^{2}=120 \Rightarrow x=2 \sqrt{30}$. This gives an absolute maximum since $A^{\prime}(x)>0$ for $0<x<2 \sqrt{30}$ and $A^{\prime}(x)<0$ for $x>2 \sqrt{30}$. When $x=2 \sqrt{30}, y=180 /(2 \sqrt{30})$, so the dimensions are $2 \sqrt{30}$ in. and $90 / \sqrt{30}$ in.
40. The volume and surface area of a cone with radius r and height h are given by $V=\frac{1}{3} \pi r^{2} h$ and $S=\pi r \sqrt{r^{2}+h^{2}}$.

We'll minimize $A=S^{2}$ subject to $V=27 . \quad V=27 \quad \Rightarrow \quad \frac{1}{3} \pi r^{2} h=27 \quad \Rightarrow \quad r^{2}=\frac{81}{\pi h}$
$A=\pi^{2} r^{2}\left(r^{2}+h^{2}\right)=\pi^{2}\left(\frac{81}{\pi h}\right)\left(\frac{81}{\pi h}+h^{2}\right)=\frac{81^{2}}{h^{2}}+81 \pi h$, so $A^{\prime}=0 \Rightarrow \frac{-2 \cdot 81^{2}}{h^{3}}+81 \pi=0 \Rightarrow$ $81 \pi=\frac{2 \cdot 81^{2}}{h^{3}} \Rightarrow h^{3}=\frac{162}{\pi} \Rightarrow h=\sqrt[3]{\frac{162}{\pi}}=3 \sqrt[3]{\frac{6}{\pi}} \approx 3.722$. From (1), $r^{2}=\frac{81}{\pi h}=\frac{81}{\pi \cdot 3 \sqrt[3]{6 / \pi}}=\frac{27}{\sqrt[3]{6 \pi^{2}}} \Rightarrow$ $r=\frac{3 \sqrt{3}}{\sqrt[6]{6 \pi^{2}}} \approx 2.632 . A^{\prime \prime}=6 \cdot 81^{2} / h^{4}>0$, so A and hence S has an absolute minimum at these values of r and h.
49. There are $(6-x) \mathrm{km}$ over land and $\sqrt{x^{2}+4} \mathrm{~km}$ under the river.

We need to minimize the cost C (measured in $\$ 100,000$) of the pipeline.
$C(x)=(6-x)(4)+\left(\sqrt{x^{2}+4}\right)(8) \Rightarrow$
$C^{\prime}(x)=-4+8 \cdot \frac{1}{2}\left(x^{2}+4\right)^{-1 / 2}(2 x)=-4+\frac{8 x}{\sqrt{x^{2}+4}}$.

$C^{\prime}(x)=0 \Rightarrow 4=\frac{8 x}{\sqrt{x^{2}+4}} \Rightarrow \sqrt{x^{2}+4}=2 x \Rightarrow x^{2}+4=4 x^{2} \quad \Rightarrow \quad 4=3 x^{2} \quad \Rightarrow \quad x^{2}=\frac{4}{3} \quad \Rightarrow$
$x=2 / \sqrt{3} \quad[0 \leq x \leq 6]$. Compare the costs for $x=0,2 / \sqrt{3}$, and $6 . C(0)=24+16=40$,
$C(2 / \sqrt{3})=24-8 / \sqrt{3}+32 / \sqrt{3}=24+24 / \sqrt{3} \approx 37.9$, and $C(6)=0+8 \sqrt{40} \approx 50.6$. So the minimum cost is about
$\$ 3.79$ million when P is $6-2 / \sqrt{3} \approx 4.85 \mathrm{~km}$ east of the refinery.
70.

Paradoxically, we solve this maximum problem by solving a minimum problem.
Let L be the length of the line $A C B$ going from wall to wall touching the inner corner C. As $\theta \rightarrow 0$ or $\theta \rightarrow \frac{\pi}{2}$, we have $L \rightarrow \infty$ and there will be an angle that makes L a minimum. A pipe of this length will just fit around the corner.

From the diagram, $L=L_{1}+L_{2}=9 \csc \theta+6 \sec \theta \Rightarrow d L / d \theta=-9 \csc \theta \cot \theta+6 \sec \theta \tan \theta=0$ when
$6 \sec \theta \tan \theta=9 \csc \theta \cot \theta \Leftrightarrow \tan ^{3} \theta=\frac{9}{6}=1.5 \Leftrightarrow \tan \theta=\sqrt[3]{1.5}$. Then $\sec ^{2} \theta=1+\left(\frac{3}{2}\right)^{2 / 3}$ and $\csc ^{2} \theta=1+\left(\frac{3}{2}\right)^{-2 / 3}$, so the longest pipe has length $L=9\left[1+\left(\frac{3}{2}\right)^{-2 / 3}\right]^{1 / 2}+6\left[1+\left(\frac{3}{2}\right)^{2 / 3}\right]^{1 / 2} \approx 21.07 \mathrm{ft}$.
Or, use $\theta=\tan ^{-1}(\sqrt[3]{1.5}) \approx 0.853 \Rightarrow L=9 \csc \theta+6 \sec \theta \approx 21.07 \mathrm{ft}$.

