- 2. (a) $\lim_{x\to a} [f(x)p(x)]$ is an indeterminate form of type $0\cdot\infty$.
 - (b) When x is near a, p(x) is large and h(x) is near 1, so h(x)p(x) is large. Thus, $\lim_{x\to a} [h(x)p(x)] = \infty$.
 - (c) When x is near a, p(x) and q(x) are both large, so p(x)q(x) is large. Thus, $\lim_{x\to a}[p(x)q(x)]=\infty$.
- **4.** (a) $\lim_{x\to a} [f(x)]^{g(x)}$ is an indeterminate form of type 0^0 .
 - (b) If $y = [f(x)]^{p(x)}$, then $\ln y = p(x) \ln f(x)$. When x is near $a, p(x) \to \infty$ and $\ln f(x) \to -\infty$, so $\ln y \to -\infty$. Therefore, $\lim_{x \to a} [f(x)]^{p(x)} = \lim_{x \to a} y = \lim_{x \to a} e^{\ln y} = 0$, provided f^p is defined.
 - (c) $\lim_{x \to a} [h(x)]^{p(x)}$ is an indeterminate form of type 1^{∞} .
 - (d) $\lim_{x\to a} [p(x)]^{f(x)}$ is an indeterminate form of type ∞^0 .
 - (e) If $y = [p(x)]^{q(x)}$, then $\ln y = q(x) \ln p(x)$. When x is near $a, q(x) \to \infty$ and $\ln p(x) \to \infty$, so $\ln y \to \infty$. Therefore, $\lim_{x \to a} [p(x)]^{q(x)} = \lim_{x \to a} y = \lim_{x \to a} e^{\ln y} = \infty.$
 - (f) $\lim_{x\to a} \sqrt[q(x)]{p(x)} = \lim_{x\to a} [p(x)]^{1/q(x)}$ is an indeterminate form of type ∞^0
- **6.** From the graphs of f and g, we see that $\lim_{x\to 2} f(x) = 0$ and $\lim_{x\to 2} g(x) = 0$, so l'Hospital's Rule applies.

$$\lim_{x \to 2} \frac{f(x)}{g(x)} = \lim_{x \to 2} \frac{f'(x)}{g'(x)} = \frac{\lim_{x \to 2} f'(x)}{\lim_{x \to 2} g'(x)} = \frac{f'(2)}{g'(2)} = \frac{1.5}{-1} = -\frac{3}{2}$$

- **12.** This limit has the form $\frac{0}{0}$. $\lim_{x\to 0} \frac{\sin 4x}{\tan 5x} \stackrel{\text{H}}{=} \lim_{x\to 0} \frac{4\cos 4x}{5\sec^2(5x)} = \frac{4(1)}{5(1)^2} = \frac{4}{5}$
- 28. This limit has the form $\frac{0}{0}$

$$\lim_{x \to 0} \frac{x - \sin x}{x - \tan x} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{1 - \cos x}{1 - \sec^2 x} \stackrel{\text{H}}{=} \lim_{x \to 0} \frac{-(-\sin x)}{-2\sec x (\sec x \tan x)} = -\frac{1}{2} \lim_{x \to 0} \frac{\sin x \left(\frac{\cos x}{\sin x}\right)}{\sec^2 x}$$
$$= -\frac{1}{2} \lim_{x \to 0} \cos^3 x = -\frac{1}{2} (1)^3 = -\frac{1}{2}$$

Another method is to write the limit as $\lim_{x\to 0} \frac{1-\frac{\sin x}{x}}{1-\frac{\tan x}{x}}$.

41. This limit has the form $\infty \cdot 0$. We'll change it to the form $\frac{0}{0}$.

$$\lim_{x\to\infty}x\sin(\pi/x)=\lim_{x\to\infty}\frac{\sin(\pi/x)}{1/x}\stackrel{\mathrm{H}}{=}\lim_{x\to\infty}\frac{\cos(\pi/x)(-\pi/x^2)}{-1/x^2}=\pi\lim_{x\to\infty}\cos(\pi/x)=\pi(1)=\pi$$

55.
$$y = x^{\sqrt{x}} \quad \Rightarrow \quad \ln y = \sqrt{x} \, \ln x$$
, so

$$\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \sqrt{x} \, \ln x = \lim_{x \to 0^+} \frac{\ln x}{x^{-1/2}} \stackrel{\mathrm{H}}{=} \lim_{x \to 0^+} \frac{1/x}{-\frac{1}{2}x^{-3/2}} = -2 \lim_{x \to 0^+} \sqrt{x} = 0 \quad \Rightarrow \quad x \to 0^+$$

$$\lim_{x \to 0^+} x^{\sqrt{x}} = \lim_{x \to 0^+} e^{\ln y} = e^0 = 1.$$

61.
$$y = x^{1/x} \Rightarrow \ln y = (1/x) \ln x \Rightarrow \lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{\ln x}{x} \stackrel{\mathbb{H}}{=} \lim_{x \to \infty} \frac{1/x}{1} = 0 \Rightarrow$$

$$\lim_{x \to \infty} x^{1/x} = \lim_{x \to \infty} e^{\ln y} = e^0 = 1$$

72. This limit has the form
$$\frac{\infty}{\infty}$$
. $\lim_{x\to\infty} \frac{\ln x}{x^p} = \lim_{x\to\infty} \frac{1/x}{px^{p-1}} = \lim_{x\to\infty} \frac{1}{px^p} = 0$ since $p > 0$.

73.
$$\lim_{x\to\infty}\frac{x}{\sqrt{x^2+1}}\stackrel{\text{H}}{=}\lim_{x\to\infty}\frac{1}{\frac{1}{2}(x^2+1)^{-1/2}(2x)}=\lim_{x\to\infty}\frac{\sqrt{x^2+1}}{x}$$
. Repeated applications of l'Hospital's Rule result in the

original limit or the limit of the reciprocal of the function. Another method is to try dividing the numerator and denominator

by
$$x$$
: $\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{x/x}{\sqrt{x^2/x^2 + 1/x^2}} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + 1/x^2}} = \frac{1}{1} = 1$

4. Call the two numbers x and y. Then x + y = 16, so y = 16 - x. Call the sum of their squares S. Then

$$S = x^2 + y^2 = x^2 + (16 - x)^2 \quad \Rightarrow \quad S' = 2x + 2(16 - x)(-1) = 2x - 32 + 2x = 4x - 32. \quad S' = 0 \quad \Rightarrow \quad x = 8.$$

Since S'(x) < 0 for 0 < x < 8 and S'(x) > 0 for x > 8, there is an absolute minimum at x = 8. Thus, y = 16 - 8 = 8 and $S = 8^2 + 8^2 = 128$.

8. If the rectangle has dimensions x and y, then its area is $xy = 1000 \text{ m}^2$, so y = 1000/x. The perimeter

$$P=2x+2y=2x+2000/x$$
. We wish to minimize the function $P(x)=2x+2000/x$ for $x>0$

$$P'(x) = 2 - 2000/x^2 = (2/x^2)(x^2 - 1000)$$
, so the only critical number in the domain of P is $x = \sqrt{1000}$.

$$P''(x) = 4000/x^3 > 0$$
, so P is concave upward throughout its domain and $P(\sqrt{1000}) = 4\sqrt{1000}$ is an absolute minimum

value. The dimensions of the rectangle with minimal perimeter are $x=y=\sqrt{1000}=10\,\sqrt{10}$ m. (The rectangle is a square.)

10. We need to maximize P for $I \geq 0$. $P(I) = \frac{100I}{I^2 + I + 4} \Rightarrow$

$$P'(I) = \frac{(I^2 + I + 4)(100) - 100I(2I + 1)}{(I^2 + I + 4)^2} = \frac{100(I^2 + I + 4 - 2I^2 - I)}{(I^2 + I + 4)^2} = \frac{-100(I^2 - 4)}{(I^2 + I + 4)^2} = \frac{-100(I + 2)(I - 2)}{(I^2 + I + 4)^2} = \frac{-100(I$$

$$P'(I) > 0$$
 for $0 < I < 2$ and $P'(I) < 0$ for $I > 2$. Thus, P has an absolute maximum of $P(2) = 20$ at $I = 2$

11. (a)

100

The areas of the three figures are 12,500, 12,500, and 9000 ft². There appears to be a maximum area of at least 12,500 ft².

(b) Let \boldsymbol{x} denote the length of each of two sides and three dividers.

Let y denote the length of the other two sides.

(d) Length of fencing =
$$750 \implies 5x + 2y = 750$$

(e)
$$5x + 2y = 750 \implies y = 375 - \frac{5}{2}x \implies A(x) = \left(375 - \frac{5}{2}x\right)x = 375x - \frac{5}{2}x^2$$

(f) $A'(x) = 375 - 5x = 0 \implies x = 75$. Since A''(x) = -5 < 0 there is an absolute maximum when x = 75. Then $y = \frac{375}{2} = 187.5$. The largest area is $75\left(\frac{375}{2}\right) = 14,062.5$ ft². These values of x and y are between the values in the first and second figures in part (a). Our original estimate was low.

The area of the rectangle is (2x)(2y) = 4xy. Also $r^2 = x^2 + y^2$ so

$$y = \sqrt{r^2 - x^2}$$
, so the area is $A(x) = 4x\sqrt{r^2 - x^2}$. Now

$$A'(x)=4igg(\sqrt{r^2-x^2}-rac{x^2}{\sqrt{r^2-x^2}}igg)=4rac{r^2-2x^2}{\sqrt{r^2-x^2}}.$$
 The critical number is

 $x = \frac{1}{\sqrt{2}}r$. Clearly this gives a maximum.

$$y = \sqrt{r^2 - \left(\frac{1}{\sqrt{2}}r\right)^2} = \sqrt{\frac{1}{2}r^2} = \frac{1}{\sqrt{2}}r = x$$
, which tells us that the rectangle is a square. The dimensions are $2x = \sqrt{2}r$ and $2y = \sqrt{2}r$.

34.

xy = 180, so y = 180/x. The printed area is

$$(x-2)(y-3) = (x-2)(180/x-3) = 186 - 3x - 360/x = A(x).$$

 $A'(x) = -3 + 360/x^2 = 0$ when $x^2 = 120$ $\Rightarrow x = 2\sqrt{30}$. This gives an absolute maximum since A'(x) > 0 for $0 < x < 2\sqrt{30}$ and A'(x) < 0 for $x > 2\sqrt{30}$. When

 $x=2\sqrt{30}, y=180/(2\sqrt{30})$, so the dimensions are $2\sqrt{30}$ in. and $90/\sqrt{30}$ in.

40. The volume and surface area of a cone with radius r and height h are given by $V = \frac{1}{3}\pi r^2 h$ and $S = \pi r \sqrt{r^2 + h^2}$.

We'll minimize
$$A = S^2$$
 subject to $V = 27$. $V = 27$ $\Rightarrow \frac{1}{3}\pi r^2 h = 27$ $\Rightarrow r^2 = \frac{81}{\pi h}$ (1).

$$A = \pi^2 r^2 (r^2 + h^2) = \pi^2 \left(\frac{81}{\pi h}\right) \left(\frac{81}{\pi h} + h^2\right) = \frac{81^2}{h^2} + 81\pi h, \text{ so } A' = 0 \quad \Rightarrow \quad \frac{-2 \cdot 81^2}{h^3} + 81\pi = 0 \quad \Rightarrow \quad \frac{-2 \cdot 81^2}{h^3} + 81\pi = 0$$

$$81\pi = \frac{2 \cdot 81^2}{h^3} \quad \Rightarrow \quad h^3 = \frac{162}{\pi} \quad \Rightarrow \quad h = \sqrt[3]{\frac{162}{\pi}} = 3\sqrt[3]{\frac{6}{\pi}} \approx 3.722. \text{ From (1)}, \\ r^2 = \frac{81}{\pi h} = \frac{81}{\pi \cdot 3\sqrt[3]{6/\pi}} = \frac{27}{\sqrt[3]{6\pi^2}} \quad \Rightarrow \quad h = \sqrt[3]{\frac{162}{\pi}} = 3\sqrt[3]{\frac{6}{\pi}} \approx 3.722.$$

 $r=rac{3\sqrt{3}}{\sqrt[6]{6\pi^2}}\approx 2.632$. $A''=6\cdot 81^2/h^4>0$, so A and hence S has an absolute minimum at these values of r and h.

49. There are (6-x) km over land and $\sqrt{x^2+4}$ km under the river.

We need to minimize the cost C (measured in \$100,000) of the pipeline.

$$C(x) = (6-x)(4) + (\sqrt{x^2+4})(8) \Rightarrow$$

$$C'(x) = -4 + 8 \cdot \frac{1}{2}(x^2 + 4)^{-1/2}(2x) = -4 + \frac{8x}{\sqrt{x^2 + 4}}$$

$$C'(x) = 0 \Rightarrow 4 = \frac{8x}{\sqrt{x^2 + 4}} \Rightarrow \sqrt{x^2 + 4} = 2x \Rightarrow x^2 + 4 = 4x^2 \Rightarrow 4 = 3x^2 \Rightarrow x^2 = \frac{4}{3} \Rightarrow x^2 = \frac{4}$$

 $x = 2/\sqrt{3}$ [0 \le x \le 6]. Compare the costs for $x = 0, 2/\sqrt{3}$, and 6. C(0) = 24 + 16 = 40,

 $C(2/\sqrt{3}) = 24 - 8/\sqrt{3} + 32/\sqrt{3} = 24 + 24/\sqrt{3} \approx 37.9$, and $C(6) = 0 + 8\sqrt{40} \approx 50.6$. So the minimum cost is about

\$3.79 million when P is $6-2/\sqrt{3}\approx 4.85$ km east of the refinery.

70.

Paradoxically, we solve this maximum problem by solving a minimum problem. Let L be the length of the line ACB going from wall to wall touching the inner corner C. As $\theta \to 0$ or $\theta \to \frac{\pi}{2}$, we have $L \to \infty$ and there will be an angle that

makes L a minimum. A pipe of this length will just fit around the corner.

From the diagram, $L=L_1+L_2=9\csc\theta+6\sec\theta \ \Rightarrow \ dL/d\theta=-9\csc\theta\cot\theta+6\sec\theta\tan\theta=0$ when

$$6\sec\theta\,\tan\theta = 9\csc\theta\,\cot\theta \quad \Leftrightarrow \quad \tan^3\theta = \tfrac{9}{6} = 1.5 \quad \Leftrightarrow \quad \tan\theta = \sqrt[3]{1.5}. \text{ Then } \sec^2\theta = 1 + \left(\tfrac{3}{2}\right)^{2/3} \text{ and } \frac{1}{2} + \frac{3}{2} + \frac$$

$$\csc^2 \theta = 1 + \left(\frac{3}{2}\right)^{-2/3}$$
, so the longest pipe has length $L = 9\left[1 + \left(\frac{3}{2}\right)^{-2/3}\right]^{1/2} + 6\left[1 + \left(\frac{3}{2}\right)^{2/3}\right]^{1/2} \approx 21.07 \text{ ft.}$

Or, use $\theta = \tan^{-1}(\sqrt[3]{1.5}) \approx 0.853 \implies L = 9 \csc \theta + 6 \sec \theta \approx 21.07 \text{ ft.}$