2. (a) Slope $=\frac{2948-2530}{42-36}=\frac{418}{6} \approx 69.67$
(b) Slope $=\frac{2948-2661}{42-38}=\frac{287}{4}=71.75$
(c) Slope $=\frac{2948-2806}{42-40}=\frac{142}{2}=71$
(d) Slope $=\frac{3080-2948}{44-42}=\frac{132}{2}=66$

From the data, we see that the patient's heart rate is decreasing from 71 to 66 heartbeats/minute after 42 minutes. After being stable for a while, the patient's heart rate is dropping.
6. (a) $h(x)$ approaches 4 as x approaches -3 from the left, so $\lim _{x \rightarrow-3^{-}} h(x)=4$.
(b) $h(x)$ approaches 4 as x approaches -3 from the right, so $\lim _{x \rightarrow-3^{+}} h(x)=4$.
(c) $\lim _{x \rightarrow-3} h(x)=4$ because the limits in part (a) and part (b) are equal.
(d) $h(-3)$ is not defined, so it doesn't exist.
(e) $h(x)$ approaches 1 as x approaches 0 from the left, so $\lim _{x \rightarrow 0^{-}} h(x)=1$.
(f) $h(x)$ approaches -1 as x approaches 0 from the right, so $\lim _{x \rightarrow 0^{+}} h(x)=-1$.
(g) $\lim _{x \rightarrow 0} h(x)$ does not exist because the limits in part (e) and part (f) are not equal.
(h) $h(0)=1$ since the point $(0,1)$ is on the graph of h.
(i) Since $\lim _{x \rightarrow 2^{-}} h(x)=2$ and $\lim _{x \rightarrow 2^{+}} h(x)=2$, we have $\lim _{x \rightarrow 2} h(x)=2$.
(j) $h(2)$ is not defined, so it doesn't exist.
(k) $h(x)$ approaches 3 as x approaches 5 from the right, so $\lim _{x \rightarrow 5^{+}} h(x)=3$.
(l) $h(x)$ does not approach any one number as x approaches 5 from the left, so $\lim _{x \rightarrow 5^{-}} h(x)$ does not exist.
8. (a) $\lim _{x \rightarrow 2} R(x)=-\infty$
(b) $\lim _{x \rightarrow 5} R(x)=\infty$
(c) $\lim _{x \rightarrow-3^{-}} R(x)=-\infty$
(d) $\lim _{x \rightarrow-3^{+}} R(x)=\infty$
(e) The equations of the vertical asymptotes are $x=-3, x=2$, and $x=5$.
16. $\lim _{x \rightarrow 0} f(x)=1, \lim _{x \rightarrow 3^{-}} f(x)=-2, \lim _{x \rightarrow 3^{+}} f(x)=2$,
$f(0)=-1, f(3)=1$

2. (a) $\lim _{x \rightarrow 2}[f(x)+g(x)]=\lim _{x \rightarrow 2} f(x)+\lim _{x \rightarrow 2} g(x)=2+0=2$
(b) $\lim _{x \rightarrow 1} g(x)$ does not exist since its left- and right-hand limits are not equal, so the given limit does not exist.
(c) $\lim _{x \rightarrow 0}[f(x) g(x)]=\lim _{x \rightarrow 0} f(x) \cdot \lim _{x \rightarrow 0} g(x)=0 \cdot 1.3=0$
(d) Since $\lim _{x \rightarrow-1} g(x)=0$ and g is in the denominator, but $\lim _{x \rightarrow-1} f(x)=-1 \neq 0$, the given limit does not exist.
(e) $\lim _{x \rightarrow 2} x^{3} f(x)=\left[\lim _{x \rightarrow 2} x^{3}\right]\left[\lim _{x \rightarrow 2} f(x)\right]=2^{3} \cdot 2=16$
(f) $\lim _{x \rightarrow 1} \sqrt{3+f(x)}=\sqrt{3+\lim _{x \rightarrow 1} f(x)}=\sqrt{3+1}=2$
4. $\lim _{x \rightarrow-1}\left(x^{4}-3 x\right)\left(x^{2}+5 x+3\right)=\lim _{x \rightarrow-1}\left(x^{4}-3 x\right) \lim _{x \rightarrow-1}\left(x^{2}+5 x+3\right)$
[Limit Law 4]

$$
\begin{align*}
& =\left(\lim _{x \rightarrow-1} x^{4}-\lim _{x \rightarrow-1} 3 x\right)\left(\lim _{x \rightarrow-1} x^{2}+\lim _{x \rightarrow-1} 5 x+\lim _{x \rightarrow-1} 3\right) \tag{2,1}\\
& =\left(\lim _{x \rightarrow-1} x^{4}-3 \lim _{x \rightarrow-1} x\right)\left(\lim _{x \rightarrow-1} x^{2}+5 \lim _{x \rightarrow-1} x+\lim _{x \rightarrow-1} 3\right) \tag{3}\\
& =(1+3)(1-5+3) \tag{9,8,and7}\\
& =4(-1)=-4
\end{align*}
$$

12. $\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x^{2}-3 x-4}=\lim _{x \rightarrow 4} \frac{x(x-4)}{(x-4)(x+1)}=\lim _{x \rightarrow 4} \frac{x}{x+1}=\frac{4}{4+1}=\frac{4}{5}$
13. $\lim _{x \rightarrow-1} \frac{x^{2}-4 x}{x^{2}-3 x-4}$ does not exist since $x^{2}-3 x-4 \rightarrow 0$ but $x^{2}-4 x \rightarrow 5$ as $x \rightarrow-1$.
14. $\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}=\lim _{x \rightarrow-4} \frac{\frac{x+4}{4 x}}{4+x}=\lim _{x \rightarrow-4} \frac{x+4}{4 x(4+x)}=\lim _{x \rightarrow-4} \frac{1}{4 x}=\frac{1}{4(-4)}=-\frac{1}{16}$
15. $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right)=\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t(t+1)}\right)=\lim _{t \rightarrow 0} \frac{t+1-1}{t(t+1)}=\lim _{t \rightarrow 0} \frac{1}{t+1}=\frac{1}{0+1}=1$
16. Let $f(x)=-\sqrt{x^{3}+x^{2}}, g(x)=\sqrt{x^{3}+x^{2}} \sin (\pi / x)$, and $h(x)=\sqrt{x^{3}+x^{2}}$. Then $-1 \leq \sin (\pi / x) \leq 1 \Rightarrow-\sqrt{x^{3}+x^{2}} \leq \sqrt{x^{3}+x^{2}} \sin (\pi / x) \leq \sqrt{x^{3}+x^{2}} \Rightarrow$ $f(x) \leq g(x) \leq h(x)$. So since $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} h(x)=0$, by the Squeeze Theorem we have $\lim _{x \rightarrow 0} g(x)=0$.

17. $|x+6|=\left\{\begin{array}{ll}x+6 & \text { if } x+6 \geq 0 \\ -(x+6) & \text { if } x+6<0\end{array}= \begin{cases}x+6 & \text { if } x \geq-6 \\ -(x+6) & \text { if } x<-6\end{cases}\right.$

We'll look at the one-sided limits.
$\lim _{x \rightarrow-6^{+}} \frac{2 x+12}{|x+6|}=\lim _{x \rightarrow-6^{+}} \frac{2(x+6)}{x+6}=2$ and $\lim _{x \rightarrow-6^{-}} \frac{2 x+12}{|x+6|}=\lim _{x \rightarrow-6^{-}} \frac{2(x+6)}{-(x+6)}=-2$
The left and right limits are different, so $\lim _{x \rightarrow-6} \frac{2 x+12}{|x+6|}$ does not exist.
47. (a)

(b) (i) Since $\operatorname{sgn} x=1$ for $x>0, \lim _{x \rightarrow 0^{+}} \operatorname{sgn} x=\lim _{x \rightarrow 0^{+}} 1=1$.
(ii) Since $\operatorname{sgn} x=-1$ for $x<0, \lim _{x \rightarrow 0^{-}} \operatorname{sgn} x=\lim _{x \rightarrow 0^{-}}-1=-1$.
(iii) Since $\lim _{x \rightarrow 0^{-}} \operatorname{sgn} x \neq \lim _{x \rightarrow 0^{+}} \operatorname{sgn} x, \lim _{x \rightarrow 0} \operatorname{sgn} x$ does not exist.
(iv) Since $|\operatorname{sgn} x|=1$ for $x \neq 0, \lim _{x \rightarrow 0}|\operatorname{sgn} x|=\lim _{x \rightarrow 0} 1=1$.
4. (a) $\lim _{x \rightarrow \infty} g(x)=2$
(b) $\lim _{x \rightarrow-\infty} g(x)=-1$
(c) $\lim _{x \rightarrow 0} g(x)=-\infty$
(d) $\lim _{x \rightarrow 2^{-}} g(x)=-\infty$
(e) $\lim _{x \rightarrow 2^{+}} g(x)=\infty$
(f) Vertical: $x=0, x=2$;
horizontal: $y=-1, y=2$
16. $\lim _{x \rightarrow \infty} \frac{1-x^{2}}{x^{3}-x+1}=\lim _{x \rightarrow \infty} \frac{\left(1-x^{2}\right) / x^{3}}{\left(x^{3}-x+1\right) / x^{3}}=\lim _{x \rightarrow \infty} \frac{1 / x^{3}-1 / x}{1-1 / x^{2}+1 / x^{3}}$

$$
=\frac{\lim _{x \rightarrow \infty} 1 / x^{3}-\lim _{x \rightarrow \infty} 1 / x}{\lim _{x \rightarrow \infty} 1-\lim _{x \rightarrow \infty} 1 / x^{2}+\lim _{x \rightarrow \infty} 1 / x^{3}}=\frac{0-0}{1-0+0}=0
$$

22. $\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{4}+1}}=\lim _{x \rightarrow \infty} \frac{x^{2} / x^{2}}{\sqrt{x^{4}+1} / x^{2}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{\left(x^{4}+1\right) / x^{4}}} \quad\left[\right.$ since $x^{2}=\sqrt{x^{4}}$ for $x>0$]

$$
=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+1 / x^{4}}}=\frac{1}{\sqrt{1+0}}=1
$$

30. $\lim _{x \rightarrow \infty}\left(e^{-x}+2 \cos 3 x\right)$ does not exist. $\lim _{x \rightarrow \infty} e^{-x}=0$, but $\lim _{x \rightarrow \infty}(2 \cos 3 x)$ does not exist because the values of $2 \cos 3 x$ oscillate between the values of -2 and 2 infinitely often, so the given limit does not exist.
31. Let $t=e^{x}$. As $x \rightarrow \infty, t \rightarrow \infty$. $\lim _{x \rightarrow \infty} \arctan \left(e^{x}\right)=\lim _{t \rightarrow \infty} \arctan t=\frac{\pi}{2}$ by (3).

Page 3

43. $\lim _{x \rightarrow \infty} \frac{2 x^{2}+x-1}{x^{2}+x-2}=\lim _{x \rightarrow \infty} \frac{\frac{2 x^{2}+x-1}{x^{2}}}{\frac{x^{2}+x-2}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x}-\frac{1}{x^{2}}}{1+\frac{1}{x}-\frac{2}{x^{2}}}=\frac{\lim _{x \rightarrow \infty}\left(2+\frac{1}{x}-\frac{1}{x^{2}}\right)}{\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}-\frac{2}{x^{2}}\right)}$

$$
=\frac{\lim _{x \rightarrow \infty} 2+\lim _{x \rightarrow \infty} \frac{1}{x}-\lim _{x \rightarrow \infty} \frac{1}{x^{2}}}{\lim _{x \rightarrow \infty} 1+\lim _{x \rightarrow \infty} \frac{1}{x}-2 \lim _{x \rightarrow \infty} \frac{1}{x^{2}}}=\frac{2+0-0}{1+0-2(0)}=2, \quad \text { so } y=2 \text { is a horizontal asymptote }
$$

$y=f(x)=\frac{2 x^{2}+x-1}{x^{2}+x-2}=\frac{(2 x-1)(x+1)}{(x+2)(x-1)}$, so $\lim _{x \rightarrow-2^{-}} f(x)=\infty$,
$\lim _{x \rightarrow-2^{+}} f(x)=-\infty, \lim _{x \rightarrow 1^{-}} f(x)=-\infty$, and $\lim _{x \rightarrow 1^{+}} f(x)=\infty$. Thus, $x=-2$
and $x=1$ are vertical asymptotes. The graph confirms our work.

