4. (a) $\frac{x^{2 n} \cdot x^{3 n-1}}{x^{n+2}}=\frac{x^{2 n+3 n-1}}{x^{n+2}}=\frac{x^{5 n-1}}{x^{n+2}}=x^{4 n-3}$
(b) $\frac{\sqrt{a \sqrt{b}}}{\sqrt[3]{a b}}=\frac{\sqrt{a} \sqrt{\sqrt{b}}}{\sqrt[3]{a} \sqrt[3]{b}}=\frac{a^{1 / 2} b^{1 / 4}}{a^{1 / 3} b^{1 / 3}}=a^{(1 / 2-1 / 3)} b^{(1 / 4-1 / 3)}=a^{1 / 6} b^{-1 / 12}$
5. (a) $f(x)=a^{x}, a>0$
(b) \mathbb{R}
(c) $(0, \infty)$
(d) See Figures 4(c), 4(b), and 4(a), respectively.
6. We start with the graph of $y=e^{x}$ (Figure 13) and reflect the portion of the graph in the first quadrant about the y-axis to obtain the graph of $y=e^{|x|}$.

7. We start with the graph of $y=e^{x}$ (Figure 13) and reflect about the x-axis to get the graph of $y=-e^{x}$. Then shift the graph upward one unit to get the graph of $y=1-e^{x}$. Finally, we stretch the graph vertically by a factor of 2 to obtain the graph of $y=2\left(1-e^{x}\right)$.

8. (a) Fifteen hours represents 5 doubling periods (one doubling period is three hours). $100 \cdot 2^{5}=3200$
(b) In t hours, there will be $t / \mathbf{3}$ doubling periods. The initial population is 100 ,

9. We could draw a horizontal line that intersects the graph in more than one point. Thus, by the Horizontal Line Test, the function is not one-to-one.
10. No horizontal line intersects the graph more than once. Thus, by the Horizontal Line Test, the function is one-to-one.
11. The graph of $f(x)=10-3 x$ is a line with slope -3. It passes the Horizontal Line Test, so f is one-to-one. Algebraic solution: If $x_{1} \neq x_{2}$, then $-3 x_{1} \neq-3 x_{2} \Rightarrow 10-3 x_{1} \neq 10-3 x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$, so f is one-to-one.
12. f is not $1-1$ because eventually we all stop growing and therefore, there are two times at which we have the same height.
13. $y=f(x)=\frac{4 x-1}{2 x+3} \Rightarrow y(2 x+3)=4 x-1 \Rightarrow 2 x y+3 y=4 x-1 \Rightarrow 3 y+1=4 x-2 x y \Rightarrow$ $3 y+1=(4-2 y) x \Rightarrow x=\frac{3 y+1}{4-2 y}$. Interchange x and $y: y=\frac{3 x+1}{4-2 x}$. So $f^{-1}(x)=\frac{3 x+1}{4-2 x}$.
14. $y=f(x)=x^{2}-x \quad\left(x \geq \frac{1}{2}\right) \quad \Rightarrow \quad y=x^{2}-x+\frac{1}{4}-\frac{1}{4} \quad \Rightarrow \quad y=\left(x-\frac{1}{2}\right)^{2}-\frac{1}{4} \quad \Rightarrow$ $y+\frac{1}{4}=\left(x-\frac{1}{2}\right)^{2} \Rightarrow x-\frac{1}{2}=\sqrt{y+\frac{1}{4}} \Rightarrow x=\frac{1}{2}+\sqrt{y+\frac{1}{4}}$. Interchange x and $y: y=\frac{1}{2}+\sqrt{x+\frac{1}{4}}$. So $f^{-1}(x)=\frac{1}{2}+\sqrt{x+\frac{1}{4}}$.
15. $y=f(x)=\frac{e^{x}}{1+2 e^{x}} \Rightarrow y+2 y e^{x}=e^{x} \Rightarrow y=e^{x}-2 y e^{x} \quad \Rightarrow \quad y=e^{x}(1-2 y) \quad \Rightarrow \quad e^{x}=\frac{y}{1-2 y} \Rightarrow$ $x=\ln \left(\frac{y}{1-2 y}\right)$. Interchange x and $y: y=\ln \left(\frac{x}{1-2 x}\right)$. So $f^{-1}(x)=\ln \left(\frac{x}{1-2 x}\right)$. Note that the range of f and the domain of f^{-1} is $\left(0, \frac{1}{2}\right)$.
16. $\ln (a+b)+\ln (a-b)-2 \ln c=\ln [(a+b)(a-b)]-\ln c^{2}$
[by Laws 1, 3]

$$
\begin{aligned}
& =\ln \frac{(a+b)(a-b)}{c^{2}} \\
& \text { or } \ln \frac{a^{2}-b^{2}}{c^{2}}
\end{aligned} \quad[\text { by Law 2] }
$$

64. (a) $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}$ since $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$ and $\frac{\pi}{6}$ is in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(b) $\sec ^{-1} 2=\frac{\pi}{3}$ since $\sec \frac{\pi}{3}=2$ and $\frac{\pi}{3}$ is in $\left[0, \frac{\pi}{2}\right) \cup\left[\pi, \frac{3 \pi}{2}\right)$.
65. (a) When $x=2, y=3$. Thus, $g(2)=3$.
(b) g is one-to-one because it passes the Horizontal Line Test.
(c) When $y=2, x \approx 0.2$. So $g^{-1}(2) \approx 0.2$.
(d) The range of g is $[-1,3.5]$, which is the same as the domain of g^{-1}.
(e) We reflect the graph of g through the line $y=x$ to obtain the graph of g^{-1}.

66. $g(x)=\sqrt{16-x^{4}}$. Domain: $16-x^{4} \geq 0 \Rightarrow x^{4} \leq 16 \Rightarrow|x| \leq \sqrt[4]{16} \Rightarrow|x| \leq 2 . \quad D=[-2,2]$ Range: $\quad y \geq 0$ and $y \leq \sqrt{16} \Rightarrow 0 \leq y \leq 4 . \quad R=[0,4]$
67. Let $h(x)=x+\sqrt{x}, g(x)=\sqrt{x}$, and $f(x)=1 / x$. Then $(f \circ g \circ h)(x)=\frac{1}{\sqrt{x+\sqrt{x}}}=F(x)$.
68. (a) Let x denote the number of toaster ovens produced in one week and y the associated cost. Using the points $(1000,9000)$ and $(1500,12,000)$, we get an equation of a line:

$$
\begin{aligned}
& y-9000=\frac{12,000-9000}{1500-1000}(x-1000) \Rightarrow \\
& y=6(x-1000)+9000 \Rightarrow y=6 x+3000 .
\end{aligned}
$$

(b) The slope of 6 means that each additional toaster oven produced adds $\$ 6$ to the weekly production cost.
(c) The y-intercept of 3000 represents the overhead cost-the cost incurred without producing anything.
26. (a) $e^{x}=5 \Rightarrow x=\ln 5$
(b) $\ln x=2 \quad \Rightarrow \quad x=e^{2}$
(c) $e^{e^{x}}=2 \Rightarrow e^{x}=\ln 2 \Rightarrow x=\ln (\ln 2)$
(d) $\tan ^{-1} x=1 \Rightarrow \tan \tan ^{-1} x=\tan 1 \Rightarrow x=\tan 1(\approx 1.5574)$

