1. $\frac{d}{d x}\left[-\frac{\sqrt{1+x^{2}}}{x}+C\right]=\frac{d}{d x}\left[-\frac{\left(1+x^{2}\right)^{1 / 2}}{x}+C\right]=-\frac{x \cdot \frac{1}{2}\left(1+x^{2}\right)^{-1 / 2}(2 x)-\left(1+x^{2}\right)^{1 / 2} \cdot 1}{(x)^{2}}+0$

$$
=-\frac{\left(1+x^{2}\right)^{-1 / 2}\left[x^{2}-\left(1+x^{2}\right)\right]}{x^{2}}=-\frac{-1}{\left(1+x^{2}\right)^{1 / 2} x^{2}}=\frac{1}{x^{2} \sqrt{1+x^{2}}}
$$

6. $\int\left(\sqrt{x^{3}}+\sqrt[3]{x^{2}}\right) d x=\int\left(x^{3 / 2}+x^{2 / 3}\right) d x=\frac{x^{5 / 2}}{5 / 2}+\frac{x^{5 / 3}}{5 / 3}+C=\frac{2}{5} x^{5 / 2}+\frac{3}{5} x^{5 / 3}+C$
7. $\int v\left(v^{2}+2\right)^{2} d v=\int v\left(v^{4}+4 v^{2}+4\right) d v=\int\left(v^{5}+4 v^{3}+4 v\right) d v=\frac{v^{6}}{6}+4 \frac{v^{4}}{4}+4 \frac{v^{2}}{2}+C=\frac{1}{6} v^{6}+v^{4}+2 v^{2}+C$
8. $\int_{1}^{2}\left(4 x^{3}-3 x^{2}+2 x\right) d x=\left[x^{4}-x^{3}+x^{2}\right]_{1}^{2}=(16-8+4)-(1-1+1)=12-1=11$
9. $\int_{0}^{\pi / 4} \frac{1+\cos ^{2} \theta}{\cos ^{2} \theta} d \theta=\int_{0}^{\pi / 4}\left(\frac{1}{\cos ^{2} \theta}+\frac{\cos ^{2} \theta}{\cos ^{2} \theta}\right) d \theta=\int_{0}^{\pi / 4}\left(\sec ^{2} \theta+1\right) d \theta$

$$
=[\tan \theta+\theta]_{0}^{\pi / 4}=\left(\tan \frac{\pi}{4}+\frac{\pi}{4}\right)-(0+0)=1+\frac{\pi}{4}
$$

2. Let $u=2+x^{4}$. Then $d u=4 x^{3} d x$ and $x^{3} d x=\frac{1}{4} d u$,

$$
\text { so } \int x^{3}\left(2+x^{4}\right)^{5} d x=\int u^{5}\left(\frac{1}{4} d u\right)=\frac{1}{4} \frac{u^{6}}{6}+C=\frac{1}{24}\left(2+x^{4}\right)^{6}+C \text {. }
$$

5. Let $u=\cos \theta$. Then $d u=-\sin \theta d \theta$ and $\sin \theta d \theta=-d u$, so

$$
\int \cos ^{3} \theta \sin \theta d \theta=\int u^{3}(-d u)=-\frac{u^{4}}{4}+C=-\frac{1}{4} \cos ^{4} \theta+C
$$

7. Let $u=x^{2}$. Then $d u=2 x d x$ and $x d x=\frac{1}{2} d u$, so $\int x \sin \left(x^{2}\right) d x=\int \sin u\left(\frac{1}{2} d u\right)=-\frac{1}{2} \cos u+C=-\frac{1}{2} \cos \left(x^{2}\right)+C$.
8. Let $u=x^{3}$. Then $d u=3 x^{2} d x$ and $x^{2} d x=\frac{1}{3} d u$, so $\int x^{2} e^{x^{3}} d x=\int e^{u}\left(\frac{1}{3} d u\right)=\frac{1}{3} e^{u}+C=\frac{1}{3} e^{e^{3}}+C$.
9. Let $u=e^{x}$. Then $d u=e^{x} d x$, so $\int e^{x} \cos \left(e^{x}\right) d x=\int \cos u d u=\sin u+C=\sin \left(e^{x}\right)+C$.
10. Let $u=\ln x$. Then $d u=\frac{d x}{x}$, so $\int \frac{(\ln x)^{2}}{x} d x=\int u^{2} d u=\frac{1}{3} u^{3}+C=\frac{1}{3}(\ln x)^{3}+C$.
11. $\int \cot x d x=\int \frac{\cos x}{\sin x} d x$. Let $u=\sin x$. Then $d u=\cos x d x$, so $\int \cot x d x=\int \frac{1}{u} d u=\ln |u|+C=\ln |\sin x|+C$.
12. Let $u=x^{2}$. Then $d u=2 x d x$ and the limits are unchanged ($0^{2}=0$ and $1^{2}=1$), so
$I=\int_{0}^{1} x \sqrt{1-x^{4}} d x=\frac{1}{2} \int_{0}^{1} \sqrt{1-u^{2}} d u$. But this integral can be interpreted as the area of a quarter-circle with radius 1.
So $I=\frac{1}{2} \cdot \frac{1}{4}\left(\pi \cdot 1^{2}\right)=\frac{1}{8} \pi$.
13. Let $u=x^{2}$. Then $d u=2 x d x$, so $\int_{0}^{3} x f\left(x^{2}\right) d x=\int_{0}^{9} f(u)\left(\frac{1}{2} d u\right)=\frac{1}{2} \int_{0}^{9} f(u) d u=\frac{1}{2}(4)=2$.
14. Since $\sqrt{x}-1<0$ for $0 \leq x<1$ and $\sqrt{x}-1>0$ for $1<x \leq 4$, we have $|\sqrt{x}-1|=-(\sqrt{x}-1)=1-\sqrt{x}$ for $0 \leq x<1$ and $|\sqrt{x}-1|=\sqrt{x}-1$ for $1<x \leq 4$. Thus,

$$
\begin{aligned}
\int_{0}^{4}|\sqrt{x}-1| d x & =\int_{0}^{1}(1-\sqrt{x}) d x+\int_{1}^{4}(\sqrt{x}-1) d x=\left[x-\frac{2}{3} x^{3 / 2}\right]_{0}^{1}+\left[\frac{2}{3} x^{3 / 2}-x\right]_{1}^{4} \\
& =\left(1-\frac{2}{3}\right)-0+\left(\frac{16}{3}-4\right)-\left(\frac{2}{3}-1\right)=\frac{1}{3}+\frac{16}{3}-4+\frac{1}{3}=6-4=2
\end{aligned}
$$

62. (a) C is increasing on those intervals where C^{\prime} is positive. By the Fundamental Theorem of Calculus, $C^{\prime}(x)=\frac{d}{d x}\left[\int_{0}^{x} \cos \left(\frac{\pi}{2} t^{2}\right) d t\right]=\cos \left(\frac{\pi}{2} x^{2}\right)$. This is positive when $\frac{\pi}{2} x^{2}$ is in the interval $\left(\left(2 n-\frac{1}{2}\right) \pi,\left(2 n+\frac{1}{2}\right) \pi\right)$, n any integer. This implies that $\left(2 n-\frac{1}{2}\right) \pi<\frac{\pi}{2} x^{2}<\left(2 n+\frac{1}{2}\right) \pi \quad \Leftrightarrow \quad 0 \leq|x|<1$ or $\sqrt{4 n-1}<|x|<\sqrt{4 n+1}$, n any positive integer. So C is increasing on the intervals $(-1,1),(\sqrt{3}, \sqrt{5}),(-\sqrt{5},-\sqrt{3}),(\sqrt{7}, 3),(-3,-\sqrt{7}), \ldots$
(b) C is concave upward on those intervals where $C^{\prime \prime}>0$. We differentiate C^{\prime} to find $C^{\prime \prime}: C^{\prime}(x)=\cos \left(\frac{\pi}{2} x^{2}\right) \Rightarrow$ $C^{\prime \prime}(x)=-\sin \left(\frac{\pi}{2} x^{2}\right)\left(\frac{\pi}{2} \cdot 2 x\right)=-\pi x \sin \left(\frac{\pi}{2} x^{2}\right)$. For $x>0$, this is positive where $(2 n-1) \pi<\frac{\pi}{2} x^{2}<2 n \pi, n$ any positive integer $\Leftrightarrow \sqrt{2(2 n-1)}<x<2 \sqrt{n}, n$ any positive integer. Since there is a factor of $-x$ in $C^{\prime \prime}$, the intervals of upward concavity for $x<0$ are $(-\sqrt{2(2 n+1)},-2 \sqrt{n}), n$ any nonnegative integer. That is, C is concave upward on $(-\sqrt{2}, 0),(\sqrt{2}, 2),(-\sqrt{6},-2),(\sqrt{6}, 2 \sqrt{2}), \ldots$
(c)

(d)

The graphs of $S(x)$ and $C(x)$ have similar shapes, except that S 's flattens out near the origin, while C^{\prime} 's does not. Note that for $x>0, C$ is increasing where S is concave up, and C is decreasing where S is concave down. Similarly, S is increasing where C is concave down, and S is decreasing where C is concave up. For $x<0$, these relationships are reversed; that is, C is increasing where S is concave down, and S is increasing where C is concave up. See Example 5.3.3 and Exercise 5.3.65 for a discussion of $S(x)$.
70. $\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(\frac{1}{n}\right)^{9}+\left(\frac{2}{n}\right)^{9}+\left(\frac{3}{n}\right)^{9}+\cdots+\left(\frac{n}{n}\right)^{9}\right]=\lim _{n \rightarrow \infty} \frac{1-0}{n} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{9}=\int_{0}^{1} x^{9} d x=\left[\frac{x^{10}}{10}\right]_{0}^{1}=\frac{1}{10}$

The limit is based on Riemann sums using right endpoints and subintervals of equal length.

Page 3

