3. (a) $R_{4}=\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x \quad\left[\Delta x=\frac{\pi / 2-0}{4}=\frac{\pi}{8}\right]=\left[\sum_{i=1}^{4} f\left(x_{i}\right)\right] \Delta x$

$$
=\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right] \Delta x
$$

$$
=\left[\cos \frac{\pi}{8}+\cos \frac{2 \pi}{8}+\cos \frac{3 \pi}{8}+\cos \frac{4 \pi}{8}\right] \frac{\pi}{8}
$$

$$
\approx(0.9239+0.7071+0.3827+0) \frac{\pi}{8} \approx 0.7908
$$

Since f is decreasing on $[0, \pi / 2]$, an underestimate is obtained by using the right endpoint approximation, R_{4}.
(b) $L_{4}=\sum_{i=1}^{4} f\left(x_{i-1}\right) \Delta x=\left[\sum_{i=1}^{4} f\left(x_{i-1}\right)\right] \Delta x$

$$
=\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right] \Delta x
$$

$$
=\left[\cos 0+\cos \frac{\pi}{8}+\cos \frac{2 \pi}{8}+\cos \frac{3 \pi}{8}\right] \frac{\pi}{8}
$$

$$
\approx(1+0.9239+0.7071+0.3827) \frac{\pi}{8} \approx 1.1835
$$

L_{4} is an overestimate. Alternatively, we could just add the area of the leftmost upper rectangle and subtract the area of the rightmost lower rectangle; that is, $L_{4}=R_{4}+f(0) \cdot \frac{\pi}{8}-f\left(\frac{\pi}{2}\right) \cdot \frac{\pi}{8}$.
13. Since v is an increasing function, L_{6} will give us a lower estimate and R_{6} will give us an upper estimate.

$$
\begin{aligned}
& L_{6}=(0 \mathrm{ft} / \mathrm{s})(0.5 \mathrm{~s})+(6.2)(0.5)+(10.8)(0.5)+(14.9)(0.5)+(18.1)(0.5)+(19.4)(0.5)=0.5(69.4)=34.7 \mathrm{ft} \\
& R_{6}=0.5(6.2+10.8+14.9+18.1+19.4+20.2)=0.5(89.6)=44.8 \mathrm{ft}
\end{aligned}
$$

18. For an increasing function, using left endpoints gives us an underestimate and using right endpoints results in an overestimate.

We will use M_{6} to get an estimate. $\Delta t=\frac{30-0}{6}=5 \mathrm{~s}=\frac{5}{3600} \mathrm{~h}=\frac{1}{720} \mathrm{~h}$.

$$
\begin{aligned}
M_{6} & =\frac{1}{720}[v(2.5)+v(7.5)+v(12.5)+v(17.5)+v(22.5)+v(27.5)] \\
& =\frac{1}{720}(31.25+66+88+103.5+113.75+119.25)=\frac{1}{720}(521.75) \approx 0.725 \mathrm{~km}
\end{aligned}
$$

For a very rough check on the above calculation, we can draw a line from $(0,0)$ to $(30,120)$ and calculate the area of the triangle: $\frac{1}{2}(30)(120)=1800$. Divide by 3600 to get 0.5 , which is clearly an underestimate, making our midpoint estimate of 0.725 seem reasonable. Of course, answers will vary due to different readings of the graph.
22. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}\left(5+\frac{2 i}{n}\right)^{10}$ can be interpreted as the area of the region lying under the graph of $y=(5+x)^{10}$ on the interval $[0,2]$, since for $y=(5+x)^{10}$ on $[0,2]$ with $\Delta x=\frac{2-0}{n}=\frac{2}{n}, x_{i}=0+i \Delta x=\frac{2 i}{n}$, and $x_{i}^{*}=x_{i}$, the expression for the area is $A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(5+\frac{2 i}{n}\right)^{10} \frac{2}{n}$. Note that the answer is not unique. We could use $y=x^{10}$ on $[5,7]$ or, in general, $y=((5-n)+x)^{10}$ on $[n, n+2]$.

Page 1

24. (a) $\Delta x=\frac{1-0}{n}=\frac{1}{n}$ and $x_{i}=0+i \Delta x=\frac{i}{n} . \quad A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} \cdot \frac{1}{n}$.
(b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{3}}{n^{3}} \cdot \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{1}{n^{4}} \sum_{i=1}^{n} i^{3}=\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left[\frac{n(n+1)}{2}\right]^{2}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{4 n^{2}}=\frac{1}{4} \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{2}=\frac{1}{4}$
25. On $[2,6], \lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \ln \left(1+x_{i}^{2}\right) \Delta x=\int_{2}^{6} x \ln \left(1+x^{2}\right) d x$.
26. $\Delta x=\frac{10-1}{n}=\frac{9}{n}$ and $x_{i}=1+i \Delta x=1+\frac{9 i}{n}$, so
$\int_{1}^{10}(x-4 \ln x) d x=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(1+\frac{9 i}{n}\right)-4 \ln \left(1+\frac{9 i}{n}\right)\right] \cdot \frac{9}{n}$.
27. (a) Think of $\int_{0}^{2} f(x) d x$ as the area of a trapezoid with bases 1 and 3 and height 2 . The area of a trapezoid is $A=\frac{1}{2}(b+B) h$, so $\int_{0}^{2} f(x) d x=\frac{1}{2}(1+3) 2=4$.
(b) $\int_{0}^{5} f(x) d x=\int_{0}^{2} f(x) d x+\int_{2}^{3} f(x) d x+\int_{3}^{5} f(x) d x$

$$
\text { trapezoid rectangle } \quad \text { triangle }
$$

$$
=\frac{1}{2}(1+3) 2+3 \cdot 1+\frac{1}{2} \cdot 2 \cdot 3=4+3+3=10
$$

(c) $\int_{5}^{7} f(x) d x$ is the negative of the area of the triangle with base 2 and height $3 . \int_{5}^{7} f(x) d x=-\frac{1}{2} \cdot 2 \cdot 3=-3$.
(d) $\int_{7}^{9} f(x) d x$ is the negative of the area of a trapezoid with bases 3 and 2 and height 2 , so it equals $-\frac{1}{2}(B+b) h=-\frac{1}{2}(3+2) 2=-5$. Thus, $\int_{0}^{9} f(x) d x=\int_{0}^{5} f(x) d x+\int_{5}^{7} f(x) d x+\int_{7}^{9} f(x) d x=10+(-3)+(-5)=2$.
40. $\int_{0}^{10}|x-5| d x$ can be interpreted as the sum of the areas of the two shaded triangles; that is, $2\left(\frac{1}{2}\right)(5)(5)=25$.

51. $\int_{0}^{3} f(x) d x$ is clearly less than -1 and has the smallest value. The slope of the tangent line of f at $x=1, f^{\prime}(1)$, has a value between -1 and 0 , so it has the next smallest value. The largest value is $\int_{3}^{8} f(x) d x$, followed by $\int_{4}^{8} f(x) d x$, which has a value about 1 unit less than $\int_{3}^{8} f(x) d x$. Still positive, but with a smaller value than $\int_{4}^{8} f(x) d x$, is $\int_{0}^{8} f(x) d x$. Ordering these quantities from smallest to largest gives us

$$
\int_{0}^{3} f(x) d x<f^{\prime}(1)<\int_{0}^{8} f(x) d x<\int_{4}^{8} f(x) d x<\int_{3}^{8} f(x) d x \text { or } \mathrm{B}<\mathrm{E}<\mathrm{A}<\mathrm{D}<\mathrm{C}
$$

53. $I=\int_{-4}^{2}[f(x)+2 x+5] d x=\int_{-4}^{2} f(x) d x+2 \int_{-4}^{2} x d x+\int_{-4}^{2} 5 d x=I_{1}+2 I_{2}+I_{3}$
$I_{1}=-3 \quad$ [area below x-axis] $\quad+3-3=-3$
$I_{2}=-\frac{1}{2}(4)(4) \quad$ [area of triangle, see figure $] \quad+\frac{1}{2}(2)(2)$
$=-8+2=-6$
$I_{3}=5[2-(-4)]=5(6)=30$

Thus, $I=-3+2(-6)+30=15$.
71. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{4}}{n^{5}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{4}}{n^{4}} \cdot \frac{1}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{4} \frac{1}{n}$. At this point, we need to recognize the limit as being of the form $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$, where $\Delta x=(1-0) / n=1 / n, x_{i}=0+i \Delta x=i / n$, and $f(x)=x^{4}$. Thus, the definite integral is $\int_{0}^{1} x^{4} d x$.
4. (a) $g(x)=\int_{0}^{x} f(t) d t$, so $g(0)=0$ since the limits of integration are equal and $g(6)=0$ since the areas above and below the x-axis are equal
(b) $g(1)$ is the area under the curve from 0 to 1 , which includes two unit squares and about 80% to 90% of a third unit square, so $g(1) \approx 2.8$. Similarly, $g(2) \approx 4.9$ and $g(3) \approx 5.7$. Now $g(3)-g(2) \approx 0.8$, so $g(4) \approx g(3)-0.8 \approx 4.9$ by the symmetry of f about $x=3$. Likewise, $g(5) \approx 2.8$.
(c) As we go from $x=0$ to $x=3$, we are adding area, so g increases on the interval $(0,3)$.
(d) g increases on $(0,3)$ and decreases on $(3,6)$ [where we are subtracting area], so g has a maximum value at $x=3$.
(e) A graph of g must have a maximum at $x=3$, be symmetric about $x=3$, and have zeros at $x=0$ and $x=6$.

(f) If we sketch the graph of g^{\prime} by estimating slopes on the graph of g (as in Section 2.8), we get a graph that looks like f (as indicated by FTC1).
8. $f(t)=e^{t^{2}-t}$ and $g(x)=\int_{3}^{x} e^{t^{2}-t} d t$, so by FTC1, $g^{\prime}(x)=f(x)=e^{x^{2}-x}$.
13. Let $u=e^{x}$. Then $\frac{d u}{d x}=e^{x}$. Also, $\frac{d h}{d x}=\frac{d h}{d u} \frac{d u}{d x}$, so
$h^{\prime}(x)=\frac{d}{d x} \int_{1}^{e^{\infty}} \ln t d t=\frac{d}{d u} \int_{1}^{u} \ln t d t \cdot \frac{d u}{d x}=\ln u \frac{d u}{d x}=\left(\ln e^{x}\right) \cdot e^{x}=x e^{x}$.
16. Let $u=x^{4}$. Then $\frac{d u}{d x}=4 x^{3}$. Also, $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$, so

$$
y^{\prime}=\frac{d}{d x} \int_{0}^{x^{4}} \cos ^{2} \theta d \theta=\frac{d}{d u} \int_{0}^{u} \cos ^{2} \theta d \theta \cdot \frac{d u}{d x}=\cos ^{2} u \frac{d u}{d x}=\cos ^{2}\left(x^{4}\right) \cdot 4 x^{3} .
$$

19. $\int_{-1}^{2}\left(x^{3}-2 x\right) d x=\left[\frac{x^{4}}{4}-x^{2}\right]_{-1}^{2}=\left(\frac{2^{4}}{4}-2^{2}\right)-\left(\frac{(-1)^{4}}{4}-(-1)^{2}\right)=(4-4)-\left(\frac{1}{4}-1\right)=0-\left(-\frac{3}{4}\right)=\frac{3}{4}$
20. $\int_{-1}^{1} x^{100} d x=\left[\frac{1}{101} x^{101}\right]_{-1}^{1}=\frac{1}{101}-\left(-\frac{1}{101}\right)=\frac{2}{101}$
21. $\int_{1}^{2}(1+2 y)^{2} d y=\int_{1}^{2}\left(1+4 y+4 y^{2}\right) d y=\left[y+2 y^{2}+\frac{4}{3} y^{3}\right]_{1}^{2}=\left(2+8+\frac{32}{3}\right)-\left(1+2+\frac{4}{3}\right)=\frac{62}{3}-\frac{13}{3}=\frac{49}{3}$
22. $\int_{0}^{3}\left(2 \sin x-e^{x}\right) d x=\left[-2 \cos x-e^{x}\right]_{0}^{3}=\left(-2 \cos 3-e^{3}\right)-(-2-1)=3-2 \cos 3-e^{3}$
