ANALYSIS AND OPTIMIZATION: MIDTERM 2 PRACTICE PROBLEMS SOLUTIONS

SPRING 2016

PrACtice problem solutions

At times, I have only written the final answer or only sketched the solution. Let me know if something is unclear. I will add more explanation.
(1) Write the definition of a convex function. Let $f(\vec{x})$ and $g(\vec{x})$ be two convex functions on \mathbf{R}^{n}. Using the definition, show that the function $h(\vec{x})$ defined by

$$
h(\vec{x})=\max (f(\vec{x}), g(\vec{x}))
$$

is also convex.
Solution. A function h is convex if for every \vec{x} and \vec{y} in the domain and λ in $[0,1]$, we have

$$
\lambda h(\vec{x})+(1-\lambda) h(\vec{y}) \geq h(\lambda \vec{x}+(1-\lambda) \vec{y}) .
$$

Let us show that $h=\max (f, g)$ is convex by verifying the above inequality. Since $h(\vec{x}) \geq f(\vec{x})$ and $h(\vec{y}) \geq f(\vec{y})$, we have

$$
\lambda h(\vec{x})+(1-\lambda) h(\vec{y}) \geq \lambda f(\vec{x})+(1-\lambda) f(\vec{y}) .
$$

Since f is convex, we have

$$
\lambda f(\vec{x})+(1-\lambda) f(\vec{y}) \geq f(\lambda \vec{x}+(1-\lambda) \vec{y}) .
$$

Combining the two inequalities gives

$$
\lambda h(\vec{x})+(1-\lambda) h(\vec{y}) \geq f(\lambda \vec{x}+(1-\lambda) \vec{y}) .
$$

Similarly we get

$$
\lambda h(\vec{x})+(1-\lambda) h(\vec{y}) \geq g(\lambda \vec{x}+(1-\lambda) \vec{y}) .
$$

Combining the last two inequalities gives

$$
\lambda h(\vec{x})+(1-\lambda) h(\vec{y}) \geq \max (f(\lambda \vec{x}+(1-\lambda) \vec{y}), g(\lambda \vec{x}+(1-\lambda) \vec{y})),
$$

which is the same as

$$
\lambda h(\vec{x})+(1-\lambda) h(\vec{y}) \geq h(\lambda \vec{x}+(1-\lambda) \vec{y}) .
$$

(2) Use Jensen's inequality to prove that for positive real numbers x_{1}, \ldots, x_{n}, we have

$$
\sqrt[3]{\frac{x_{1}^{3}+\cdots+x_{n}^{3}}{n}} \geq \frac{x_{1}+\cdots+x_{n}}{n}
$$

Solution. Use Jensen's inequality for $f(x)=x^{3}$ (which is convex for $x>0$) with all $\lambda_{i}=1 / n$.
(3) Find the global minimum and maximum of the function $f(x, y)=2 x^{3}+4 y^{3}$ on the set $S=\left\{x^{2}+y^{2} \leq 1\right\}$ by the following outline.
(a) Show that the maximum and the minimum exists.

Solution. f is a continuous function on a compact set S, so the max/min exist by the maximum theorem.
(b) Using the gradient, find the possible points where the max/min could be achieved on the interior $\left\{x^{2}+y^{2}<1\right\}$.
Solution. In the interior, the max/min can only be achieved when the gradient is equal to zero. The gradient is zero only at $(x, y)=(0,0)$.
(c) Using Lagrange multipliers, find the possible points where the max/min could be achieved on the boundary $\left\{x^{2}+y^{2}=1\right\}$.
Solution. The Lagrange multiplier problem is

$$
\begin{aligned}
6 x^{2} & =2 \lambda x \\
12 y^{2} & =2 \lambda y \\
x^{2}+y^{2} & =1 .
\end{aligned}
$$

The solutions are $(x, y)=(0, \pm 1),(\pm 1,0),(2 / \sqrt{5}, 1 / \sqrt{5}),(-2 / \sqrt{5},-1 / \sqrt{5})$.
(d) Check all the possibilities.

Solution. The max is at $(0,1)$ and min at $(0,-1)$.
(4) Let A be the matrix

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

(a) Write down the quadratic form $Q(x, y, z)$ associated with A.

Solution.

$$
Q(x, y, z)=2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z
$$

(b) Show that the function $f(x, y, z)=e^{Q(x, y, z)}$ is strictly convex.

Solution. First, Q is strictly convex because the leading principal minors are positive. Now $e^{Q(x, y, z)}$ is the composition of a strictly convex function with a strictly increasing strictly convex function.
(5) Check if the following equation defines z as a function $z=g(x, y)$ in a neighborhood of $(0,0,1)$. If it does, find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$ at $(0,0,1)$.

$$
x^{3}+y^{3}+z^{3}-x y z-1=0 .
$$

(6) The same question at $(1,0,0)$ for the equation

$$
e^{z}-z^{2}-x^{2}-y^{2}=0
$$

(7) Consider the system of equations

$$
\begin{aligned}
1+(x+y) u-(2+u)^{1+v} & =0 \\
2 u-(1+x y) e^{u(x-1)} & =0
\end{aligned}
$$

Show that it defines u and v as functions of x and y near the point $(x, y, u, v)=$ $(1,1,1,0)$. Find $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}$ at this point.
Solution. The three problems above are applications of the implicit function theorem and the equation

$$
\left(\frac{\partial F}{\partial Y}\right)\left(\frac{\partial Y}{\partial X}\right)=-\left(\frac{\partial F}{\partial X}\right)
$$

where $F(X, Y)=0$ is the constraint equation and where the goal is to write Y as a function of X. By the implicit function theorem, this is possible if the $m \times m$ matrix $\left(\frac{\partial F}{\partial Y}\right)$ is invertible.

For example, denote the two equations in the last problem by f_{1} and f_{2}. Then we get

$$
\begin{aligned}
\left(\frac{\partial\left(f_{1}, f_{2}\right)}{\partial(u, v)}\right)_{(1,1,1,0)} & =\left(\begin{array}{cc}
x+y-(1+v)(2+u)^{v} & -(2+u)^{1+v} \ln (2+u) \\
2-(1+x y)(x-1) e^{u(x-1)} & 0
\end{array}\right)_{(1,1,1,0)} \\
& =\left(\begin{array}{cc}
1 & -3 \ln 3 \\
2 & 0
\end{array}\right)
\end{aligned}
$$

which is invertible. Therefore, it is possible to write u and v as functions of x and y around ($1,1,1,0$). To find the partials, solve

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & -3 \ln 3 \\
2 & 0
\end{array}\right)\left(\begin{array}{ll}
\partial u / \partial x & \partial u / \partial y \\
\partial v / \partial x & \partial v / \partial y
\end{array}\right)=-\left(\begin{array}{cc}
u & u \\
-u(1+x y) e^{u(x-1)}-y e^{u(x-1)} & -x e^{u(x-1)}
\end{array}\right)_{(1,1,1,0)} \\
& \left(\begin{array}{cc}
1 & -3 \ln 3 \\
2 & 0
\end{array}\right)\left(\begin{array}{ll}
\partial u / \partial x & \partial u / \partial y \\
\partial v / \partial x & \partial v / \partial y
\end{array}\right)=-\left(\begin{array}{cc}
1 & 1 \\
-3 & -1
\end{array}\right) .
\end{aligned}
$$

(8) Write down a function on \mathbf{R}^{2} with a critical point at $(0,0)$ which is neither a local minimum nor a local maximum.
Solution. The easiest is to write down an indefinite quadratic form like $x^{2}-y^{2}$.
(9) Write down a function whose gradient at $(0,0)$ is $(1,3)$ and whose Hessian is $\left(\begin{array}{ll}2 & 1 \\ 1 & 8\end{array}\right)$. Solution.

$$
x+3 y+\frac{1}{2}\left(2 x^{2}+2 x y+8 y^{2}\right)
$$

(10) Consider the matrix

$$
A=\left(\begin{array}{ccc}
0 & 2 & 2 \\
2 & 1 & 0 \\
2 & 0 & -1
\end{array}\right)
$$

Find an orthogonal matrix P such that $P^{T} A P$ is diagonal.
Solution. The columns of P will be the unit eigenvectors of A.
(11) State the spectral theorem.

Solution. For every symmetric matrix A, there exists an orthogonal matrix P such that $P^{T} A P$ is diagonal.

You may also state it using eigenvectors - every symmetric matrix has an orthogonal basis of eigenvectors.
(12) Let $f(x, y, z)=\sin (x+2 y) e^{z-y}$. Find the gradient and the Hessian of f. Write the second order Taylor approximation for f at ($0,0,0$).
(13) Consider the function

$$
f(x, y, z)=x^{2}+y^{2}+3 z^{2}-x y+2 x z+y z
$$

Find all critical points and use the second derivative test to determine if each one is a local minimum, local maximum, or neither (or say that the test cannot determine the answer).
(14) Suppose a differentiable convex function f on \mathbf{R}^{n} has a global maximum at a point \vec{p}. Show that f must be a constant function.
Solution. Since f is convex, the graph of f lies above the tangent (hyper)plane at any point on the graph. But the tangent (hyper)plane at \vec{p} is horizontal (since \vec{p} is a maximum), and the graph of f cannot lie strictly above this hyperplane (since \vec{p} is a maximum). So the graph must be this (hyper)plane. In other words, f is constant.

A less wordy and more math-y (and rigorous) way to write the above is as follows. Since f is convex, we have the inequality

$$
f(\vec{x}) \geq f(\vec{p})+\nabla f(p) \cdot(\vec{x}-\vec{p})
$$

Since \vec{p} is a maximum, $\nabla f(p)=0$, so we get

$$
f(\vec{x}) \geq f(\vec{p})
$$

But since \vec{p} is a maximum, we cannot have strict inequality, so we get

$$
f(\vec{x})=f(\vec{p})
$$

for all \vec{x}. So f is constant.

