ANALYSIS AND OPTIMIZATION: MIDTERM 2 PRACTICE PROBLEMS

1. Review

For your review, here is a list of topics that we have covered.

- Gradients and stationary points.
- Taylor approximation.
- Quadratic forms and their definite-ness. Relationship with eigenvalues and the spectral theorem. Criteria using principal minors.
- Second order criteria to determine local min/max for a stationary point.
- Convex and concave functions. Relationship with the first derivatives (the gradient). Relationship with the second derivatives (the Hessian). Behavior under sums and compositions. Jensen's inequality.
- The implicit function theorem.
- Lagrange multipliers for constrained optimization.

2. Practice problems

(1) Write the definition of a convex function. Let $f(\vec{x})$ and $g(\vec{x})$ be two convex functions on \mathbf{R}^{n}. Using the definition, show that the function $h(\vec{x})$ defined by

$$
h(\vec{x})=\max (f(\vec{x}), g(\vec{x}))
$$

is also convex.
(2) Use Jensen's inequality to prove that for positive real numbers x_{1}, \ldots, x_{n}, we have

$$
\sqrt[3]{\frac{x_{1}^{3}+\cdots+x_{n}^{3}}{n}} \geq \frac{x_{1}+\cdots+x_{n}}{n}
$$

(3) Find the global minimum and maximum of the function $f(x, y)=2 x^{3}+4 y^{3}$ on the set $S=\left\{x^{2}+y^{2} \leq 1\right\}$ by the following outline.
(a) Show that the maximum and the minimum exists.
(b) Using the gradient, find the possible points where the max/min could be achieved on the interior $\left\{x^{2}+y^{2}<1\right\}$.
(c) Using Lagrange multipliers, find the possible points where the max/min could be achieved on the boundary $\left\{x^{2}+y^{2}=1\right\}$.
(d) Check all the possibilities.
(4) Let A be the matrix

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

(a) Write down the quadratic form $Q(x, y, z)$ associated with A.
(b) Show that the function $f(x, y, z)=e^{Q(x, y, z)}$ is strictly convex.
(5) Check if the following equation defines z as a function $z=g(x, y)$ in a neighborhood of $(0,0,1)$. If it does, find $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$ at $(0,0,1)$.

$$
x^{3}+y^{3}+z^{3}-x y z-1=0 .
$$

(6) The same question at $(1,0,0)$ for the equation

$$
e^{z}-z^{2}-x^{2}-y^{2}=0
$$

(7) Consider the system of equations

$$
\begin{aligned}
1+(x+y) u-(2+u)^{1+v} & =0 \\
2 u-(1+x y) e^{u(x-1)} & =0 .
\end{aligned}
$$

Show that it defines u and v as functions of x and y near the point $(x, y, u, v)=$ $(1,1,1,0)$. Find $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}$ at this point.
(8) Write down a function on \mathbf{R}^{2} with a critical point at $(0,0)$ which is neither a local minimum nor a local maximum.
(9) Write down a function whose gradient at $(0,0)$ is $(1,3)$ and whose Hessian is $\left(\begin{array}{ll}2 & 1 \\ 1 & 8\end{array}\right)$.
(10) Consider the matrix

$$
A=\left(\begin{array}{ccc}
0 & 2 & 2 \\
2 & 1 & 0 \\
2 & 0 & -1
\end{array}\right)
$$

Find an orthogonal matrix P such that $P^{T} A P$ is diagonal.
(11) State the spectral theorem.
(12) Let $f(x, y, z)=\sin (x+2 y) e^{z-y}$. Find the gradient and the Hessian of f. Write the second order Taylor approximation for f at ($0,0,0$).
(13) Consider the function

$$
f(x, y, z)=x^{2}+y^{2}+3 z^{2}-x y+2 x z+y z .
$$

Find all critical points and use the second derivative test to determine if each one is a local minimum, local maximum, or neither (or say that the test cannot determine the answer).
(14) Suppose a differentiable convex function f on \mathbf{R}^{n} has a global maximum at a point p. Show that f must be a constant function.

