
ANALYSIS AND OPTIMIZATION: MIDTERM 1 PRACTICE PROBLEMS (SOLUTIONS)

SPRING 2016

(1) Find the global minimum and maximum of the function f (x) = x3/3+ x2/2− 2x on
the set [−3,3].
Solution. Differentiate, find the critical points, and evaluate f (x) at the critical points
to locate the min and max. �

(2) Calculate the rank of the matrix






2 1 3 7
−1 4 3 1
3 2 5 11.







Are columns 1, 2, and 3 linearly independent?

Solution. Use Gaussian elimination (row reduction). Columns 1, 2, and 3 are linearly
dependent if and only if they are linearly dependent after row reduction, which means
that none of them should become zero. In this case, they are linearly dependent. �

(3) Give an example of the following or explain why an example does not exist.
(a) A continuous function f : [0, 1]→ R whose image is unbounded.

Solution. Since [0,1] is compact, f must have a maximum and a minimum (by
Weierstrass’s theorem). This means that the image must be bounded. So no such
example exists. �

(b) A continuous function f : R→ R whose image is not closed.
Solution. Take f (x) = ex . Then the image of f is R>0, which is not closed. �

(c) A convex set without any extreme points.
Solution. Take the set to be Rn. �

(d) A convex set with infinitely many extreme points.
Solution. Take the circular disk {(x , y) ∈ R2 | x2+ y2 ≤ 1}. �

(e) A subset of R2 that is neither open nor closed.
Solution. Take the open circular disk {(x , y) ∈ R2 | x2+ y2 < 1} union the upper
half-circle {(x , y) ∈ R2 | x2+ y2 = 1, y ≥ 0}. �

(f) A subset of R that is both open and closed.
Solution. The empty set or R. �

(4) Suppose S ⊂ Rn is a convex set. Let A be an m× n matrix. Show that the set

T = {~y ∈ Rn | ~y = A~x for some ~x ∈ S}

is a convex set.

Solution. We must show that for any two points ~y1 and ~y2 in T , and any constant
λ ∈ [0,1], the point λ~y1 + (1− λ)~y2 lies in T . Since ~y1 ∈ T , there exists ~x1 ∈ S such
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that ~y1 = A~x2, and similarly, there exists ~x2 ∈ S such that ~y2 = A~x2. Now, we have

λ~y1+ (1−λ)~y2 = λA~x1+ (1−λ)A~x2 = A(λ~x1+ (1−λ)~x2).

Since S is convex and ~x1, ~x2 ∈ S, we know that λ~x1 + (1 − λ)~x2 ∈ S. Therefore,
λ~y1+ (1−λ)~y2 = A(λ~x1+ (1−λ)~x2) lies in T . �

(5) Use Gaussian elimination to solve the equations

x + y + 2z = 1

−x + y + 3= 0

y + 3z = 2.

Solution. Left to you. �

(6) Find the determinant of










2 3 1 0
4 −2 0 −3
8 −1 2 1
1 0 3 4











Solution. Left to you. �

(7) Let S ⊂ Rn be convex, and ~x , ~y ,~z ∈ S. Let a, b, c ∈ R be such that 0 ≤ a, b, c ≤ 1 and
a+ b+ c = 1. Show that a~x + b~y + c~z ∈ S.
Solution. Let λ = a/(a + b). Note that 0 ≤ λ ≤ 1 and 1− λ = (b)/(a + b). Since ~x
and ~y are in S, we get that

~w = λ~x +λ~y = (a~x + b~y)/(a+ b)

also lies in S.
Now take µ = (a+ b). Then 0 ≤ µ ≤ 1 and 1− µ = c. Since ~w and ~z are in S, we

get that
(a+ b)~w+ c~z = a~x + b~y + c~z

also lies in S.
By repeating the same argument, we can prove that if ~x1, . . . , ~xk ∈ S and 0 ≤

a1, . . . , ak ≤ 1 are such that a1+ · · ·+ ak = 1 then the vector a1~x1+ · · ·+ ak~xk also lies
in S. �

(8) Do the word problem from LEF 9.3, problem 25. How much extra profit is obtained
by increasing the allowed assembly time by an hour? Increasing painting time by an
hour? Increasing packaging time by an hour?
Solution. Let x1, x2, x3 be the number of bikes of type A, B, C. We get the following
linear program. Maximize 45x1+ 50x2+ 55x3 subject to

2x1+ 2.5x2+ 3x3 ≤ 4006

1.5x1+ 2x2+ x3 ≤ 2495

x1+ 0.75x2+ 1.25x3 ≤ 1500

,0≤ x1, x2, x3.
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Using the simplex method, we get the following final tableau

x1 x2 x3 s1 s2 s3 b Basic
0 1 0 2/3 8/21 -40/21 764 x2
1 0 0 -4/3 2/3 8/3 322 x1
0 0 1 2/3 -16/21 -4/21 484 x3
0 0 0 10 50/7 100/7 79310

Therefore, 322 bikes of type A, 764 bikes of type B, and 484 bikes of types C should
be produced to get the maximum profit of $79310. The shadow prices of assembly,
painting, and packaging ares $10, $50/7, and $100/7, respectively, which denote the
extra profit obtained by increasing their time by an hour.

The numbers in this problem got quite nasty. Since you won’t have a calculator, the
numbers will be friendlier in the exam. �

(9) Do the following maximization problems using the simplex method (the link to LEF is
on the course webpage)
(a) LEF 9.3, problem 14
(b) LEF 9.3 problem 18

For each of these problems, what is the shadow price associated with each constraint?

Solution. I will just give the final answers (but you will have to show your work on the
exam!).
(a) x1 = 51/7; x2 = 18/7 for the optimal z = 87/7 with shadow prices 5/7 and 1/7.
(b) x1 = 30; x2 = 24; x3 = 5 for the optimal z = 99 with shadow prices 12/13, 7/13,

and 1/13.
�

(10) Minimize z = 14x + 20y subject to the constraints x + 2y ≥ 4, 7x + 6y ≥ 20, and
x , y ≥ 0 by plotting the feasible set.
Formulate and solve the dual problem graphically.
If we change the constraint (in the primal) to x + 2y ≥ 4 + ε, what would be the
change in the optimal z?

Solution. For the first part, the optimal solution is x = 2; y = 1 with z = 48.
The dual problem is the following (I am using variables s and t for the dual. You

could use any two letters, even x and y .) Maximize w = 4s+ 20t subject to

s+ 7t ≤ 14

2s+ 6t ≤ 20

0≤ s, t.

The optimal for the dual is s = 7 and t = 1 with w = 48. The dual solution gives the
shadow prices for the primal. Since the shadow price for the first constraint is s = 1,
a change of ε in the constraint value would lead to a change of 7 · ε in the optimum,
namely 48+ 7ε. �

(11) Do the minimization problem: LEF 9.4, problem 8. This is the same problem as above.
Realized after solving it!
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(12) State the maximum theorem.

Solution. A continuous function on a compact set attains a maximum and a minimum
value.

A more elaborate way: Let S ⊂ Rn be a compact set and f : S → R a continuous
function. Then there exists an a ∈ S such that f (x) ≥ f (a) for all x ∈ S, and there
exists a b ∈ S such that f (x)≤ f (b) for all x ∈ S. �

(13) Do LEF 9.3 problem 10. Formulate the dual minimization problem. What is the opti-
mum solution of the dual?

Solution. The dual problem is the following. Minimize w = 6y1+ 12y2 subjet to

y1+ 3y2 ≥ 1

2y1+ 2y2 ≥ 1

y1, y2 ≥ 0.

The solution to the dual is given by the shadow prices for the primal, which we can
solve using the simplex method.

I won’t write the steps of the simplex method (but you will have to on the exam).
The optimal solution turns out to be x1 = 3; x2 = 3/2; y1 = 1/4; y2 = 1/4 with the
optimal value z = w = 9/2. �

(14) Determine if the following sets are open or closed or neither. Justify your answers.
(a) S ⊂ R3 defined by S = {~x | 2< |~x |< 3}.

Solution. S is open. Its the preimage of the open interval (2,3) under the contin-
uous function f (~x) = |~x |. �

(b) S ⊂ R2 defined by S = {(x , y) | x2+ y > 3 and x + y < 1}.
Solution. S is open. It is the intersection of the set {(x , y) | x2 + y > 3} and
{(x , y) | x + y < 1}. The first is the preimage of the open set (3,+∞) under the
continuous function f (x , y) = x2 + y . The second is the preimage of the open
set (−∞, 1) under the continuous function g(x , y) = x + y . Since intersection of
finitely many open sets is open, S is open. �

(c) S ⊂ R defined by S = {x | x = 1/n+ 1/m for some positive integers m and n}.
Solution. S is not open. To see this, note that 2 = 1/1 + 1/1 lies in S but no
number bigger than 2 lies in S. Since every open interval containing 2 contains
points bigger than 2, we conclude that no open interval that contains 2 is a subset
of S. In other words, 2 is not an interior point of S.
S is not closed. To see this, note that 0 6∈ S. But 0 is a boundary point of S. Any
open interval around 0 contains a point of the form 1/n for large enough n, and
1/n= 1/2n+1/2n is a point of S. Hence every open interval around 0 contains a
point of S (namely 1/n) and a point of Sc (namely 0), which makes 0 a boundary
point of S. Since 0 is a boundary point of S but not a point of S, we get that S is
not closed. �

(15) Let S ⊂ Rn be a set. Let S◦ be the set of interior points of S. Show that S◦ is an open
set. What is S◦ for S = [0,1]⊂ R? For S = {0,1} ⊂ R?
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Solution. Let x be a point of S◦. We have to show that x is an interior point of S◦.
Since x ∈ S, there exists an r > 0 such that the ball Br(x) is contained in S. But since
Br(x) is open, every y ∈ Br(x) is an interior point of Br(x) and hence an interior point
of S. Therefore, Br(x)⊂ S◦. This shows that x is an interior point of S◦.

For S = [0,1], we have S◦ = (0,1). For S = {0,1}, we have S◦ =∅. �
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