ANALYSIS AND OPTIMIZATION: HOMEWORK 9

SPRING 2016

Due date: Wednesday, April 27.

(1) Write down the Euler-Lagrange equation associated with the following optimization problems
(a) $\int x^{2}+\dot{x}^{2}+2 x e^{t} d t$
(b) $\int-e^{\dot{x}-x} d t$
(2) Consider the problem of finding a curve of shortest length in the (x, t)-plane that joins $(0,0)$ to (a, b). Formulate this as a calculus of variations problem, find the associated Euler-Lagrange equation, and check that the straight line satisfies the equation.
(3) Minimize $\int_{1}^{2} \frac{\dot{x}^{2}}{t^{2}} d t$ subject to $x(1)=0$ and $x(2)=1$.
(4) Suppose an investment amount K yields returns at rate $c K$, which can be consumed immediately or re-invested. Let C be the rate of consumption and R the rate of reinvestment. Then we have the equations $c K=C+R$, and $R=\dot{K}$ from which we get $C=c K-\dot{K}$. Suppose consumption at rate C at time t gives utility $e^{-r t} \ln C$.
(a) Which function $K(t)$ maximizes the total utility

$$
\int_{0}^{1} e^{-r t} \ln C d t
$$

subject to $K(0)=K_{0}$ and $K(1)=0$? Here $r>0$ and $c>0$ are constants.
(b) Using software of your choice, sketch the graph of the consumption function $C(t)$ for r very small and r very large (take $c=0.1$ and $K_{0}=1$).

Remark. The factor $e^{-r t}$ in front of the utility function is common in economics and is called a discounting factor. It results in greater weight given to immediate utility compared to future utility. Larger values of r mean greater preference for immediate utility.
Hint: A general solution to the differential equation $\ddot{K}-(\alpha+\beta) \dot{K}+\alpha \beta K=0$ is given by $K(t)=A e^{\alpha t}+B e^{\beta t}$.
(5) One formulation of the laws of physics says that the path taken by an object minimizes the integral $\int(T-V) d t$, where T is the kinetic energy and V is the potential energy. Suppose an object is falling vertically and its height from the ground at time t is $h(t)$. Write the Euler-Lagrange equation to minimize $\int(T-V) d t$ and check that it is equivalent to Newton's second law $(F=m a)$.
Hint: The potential energy at height h is $m g h$ and the kinetic energy at speed v is $\frac{1}{2} m v^{2}$.

