ANALYSIS AND OPTIMIZATION: HOMEWORK 8

SPRING 2016

Due date: Wednesday, April 20.

(1) Find the maximum value of

$$
1-(x-1)^{2}-e^{y^{2}}
$$

subject to the constraint

$$
x^{2}+y^{2} \leq 1
$$

Be sure to check constraint qualification. Explain why your solution is a global maximum.
(2) Given real numbers $\alpha>0$ and $\beta>0$ with $\alpha+\beta \leq 1$, find the maximum value of $x^{\alpha} y^{\beta}$ subject to

$$
x+y \leq 2, \quad x \geq 0, \quad y \geq 0
$$

Verify that your answer satisfies the envelope theorem.
(3) Minimize $x^{2}+y^{2}$ subject to

$$
y^{2} \leq(x-1)^{3} .
$$

Does a Lagrange multiplier exist? Explain what happened.
(4) A manufacturer produces three types of plastic fixtures. The time required for molding, trimming, and packaging are given in the following table (in hours per fixture).

Process	Type A	Type B	Type C	Total time available
Molding	1	2	$3 / 2$	120
Trimming	$2 / 3$	$2 / 3$	1	46
Packaging	$1 / 2$	$1 / 3$	$1 / 2$	24
Profit	$\$ 11$	$\$ 16$	$\$ 15$	-

Consider the solution $(A=6, B=51, C=8)$. Show that the KKT conditions are satisfied at this point, and find the Lagrange multipliers. Show that this point is a global maximum. How much would the profit increase if (a) the trimming time for type A was decreased by ϵ, (b) the packaging time for type C was decreased by ϵ ?
(5) For a given real number c, find the maximum value of $f(x, y)=c x+y$ on the set defined by

$$
x^{2}+2 y^{2}=2, \quad x \geq 0 \quad y \geq 0
$$

Sketch the value function $f^{*}(c)$.

