ANALYSIS AND OPTIMIZATION: HOMEWORK 6

Due date: Wednesday, March 23.

(1) Problem 1 from SHSS 2.3
(2) For which values of a is the following function convex?

$$
f(x, y)=-6 x^{2}+(2 a+4) x y-y^{2}-4 a y .
$$

(3) Decide whether the following function is convex, concave, or neither:

$$
g(x, y)=x+y-e^{x}-e^{x+y}
$$

(4) Let a, b, c be positive constants. Consider the Cobb-Douglas function defined on $\{(x, y, z) \mid$ $x>0, y>0, z>0\}$ by the formula

$$
f(x, y, z)=x^{a} y^{b} z^{c}
$$

Show that if $a+b+c<1$ then $f(x, y, z)$ is strictly concave.
(5) Use Jensen's inequality to prove the following ineqality for all real numbers x_{1}, \ldots, x_{n} :

$$
\sqrt{\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}} \geq \frac{x_{1}+\cdots+x_{n}}{n}
$$

The right hand side is known as the root mean squared of x_{1}, \ldots, x_{n}.
(6) Find the global minima of the following function defined on $\{(x, y, z) \mid x>0, y>$ $0, z>0\}$

$$
f(x, y, z)=\frac{1}{x y z}+x+y+z
$$

Justify your answer.
(7) Show that $f(x, y)=e^{x^{2}+y^{4}}$ is a convex function on \mathbf{R}^{2}.

