ANALYSIS AND OPTIMIZATION: HOMEWORK 5

SPRING 2016

Due date: Wednesday, March 9.

(1) Write the symmetric matrix associated with the quadratic form

$$
3 x_{1}^{2}-2 x_{1} x_{2}+4 x_{1} x_{3}+8 x_{1} x_{4}+x_{2}^{2}+3 x_{2} x_{3}+x_{3}^{2}-2 x_{3} x_{4}+x_{4}^{2} .
$$

Write the quadratic form associated with the symmetric matrix

$$
\left(\begin{array}{ccc}
1 & -3 & 5 \\
-3 & -2 & 0 \\
5 & 0 & 9
\end{array}\right)
$$

(2) Determine if the following quadratic forms are positive (semi) definite, negative (semi) definite, or indefinite.
(a) $-x_{1}^{2}+2 x_{1} x_{2}-6 x_{2}^{2}$.
(b) $4 x_{1}^{2}+2 x_{1} x_{2}+25 x_{2}^{2}$.
(c) $3 x_{1}^{2}-2 x_{1} x_{2}+3 x_{1} x_{3}+x_{2}^{2}+3 x_{3}^{2}$.
(3) Consider the quadratic form

$$
-x_{1}^{2}+6 x_{1} x_{2}-9 x_{2}^{2}-2 x_{3}^{2} .
$$

Find the associated matrix A. Also find a diagonal matrix D and an orthogonal matrix P such that

$$
P^{T} A P=D
$$

(4) For which values of c is the quadratic form

$$
3 x^{2}-(5+c) x y+2 c y^{2}
$$

(a) positive definite, (b) positive semidefinite, (c) indefinite?
(5) Let B be any $n \times n$ matrix and let $A=B^{T} B$. Show that A is symmetric and the quadratic form associated with A is positive semidefinite. If B is invertible, show that the quadratic form is actually positive definite.
(6) Suppose $q(\vec{x})$ is a positive semidefinite quadratic form. Use the spectral theorem to show that there exist linear functions $L_{1}(\vec{x}), \ldots, L_{n}(\vec{x})$ such that

$$
q(\vec{x})=L_{1}(\vec{x})^{2}+\cdots+L_{n}(\vec{x})^{2} .
$$

Remark: The analogous question for higher degree polynomials-when can polynomials that only take non-negative values be written as sums of squares?-has been and continues to be a topic of research. See the article Sums of Squares by Olga Taussky (Mathematical Association of America, 1970) if you are interested.

