ANALYSIS AND OPTIMIZATION: HOMEWORK 4

Due date: Wednesday, March 2.

(1) Problem 1 from SHSS § 2.1.
(2) Problem 3 from SHSS § 2.1.
(3) Problem 5 from SHSS § 2.1.
(4) Problem 1 from SHSS § 2.6.
(5) Find all the stationary points of the function

$$
f(x, y, z)=x^{3}+3 x y+3 x z+y^{3}+3 y z+z^{3} .
$$

(6) Find all the stationary points of the function

$$
f(x, y)=x^{3}+y^{3}-3 x y .
$$

Write the degree 2 Taylor approximation of f at each stationary point.
(7) Calculate the degree 4 Taylor approximation for $f(x)=(\cos (x))^{2}$ near $x=0$.
(8) Consider the function

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

(a) Show that $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=0$.
(b) It turns out that $f^{(n)}(0)=0$ for all $n=1,2,3, \ldots$ (try to prove this as a challenge, but you don't have to turn it in). In any case, determine whether $x=0$ is a local maximum, a local minimum, or neither.

