ANALYSIS AND OPTIMIZATION: HOMEWORK 2

SPRING 2016

Due date: Wednesday, February 10.

(1) Find the rank of the matrix

$$\begin{pmatrix} 1 & 0 & -1 & 2 \\ -2 & 1 & 1 & -1 \\ -3 & 2 & 1 & 0 \end{pmatrix}.$$

- (2) Let A be an invertible $n \times n$ matrix and let $v_1, \ldots, v_k \in \mathbf{R}^n$ be linearly independent vectors. Show that $Av_1, \ldots, Av_k \in \mathbf{R}^n$ are also linearly independent.
- (3) Using Gaussian elimination, find all solutions to the linear system

$$x - y + z = 2$$
, $x + 2y - z = 3$, $2x + y + 3z = 21$.

How many degrees of freedom are there?

(4) Show that the following set is closed in \mathbb{R}^2 .

 $S = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \ge \sin(x + y), x \le y, \text{ and } x^2 + y^2 = 10xy\}.$

- (5) Give examples of subsets $S \subset \mathbf{R}$ and continuous functions f such that
 - (a) *S* is closed but f(S) is not closed $(f: S \rightarrow \mathbf{R})$
 - (b) *S* is open but f(S) is not open $(f: S \rightarrow \mathbf{R})$,
 - (c) *S* is bounded but f(S) is not bounded $(f: S \rightarrow \mathbf{R})$,
 - (d) *S* is compact but $f^{-1}(S)$ is not compact $(f : \mathbf{R} \rightarrow \mathbf{R})$.
- (6) Show that an extreme point of a convex set must be a boundary point of that set. Is the converse true?
- (7) Which of the following sets are open or closed? To justify your answers, write down the set of boundary points and the set of interior points in each case.
 - (a) $(-\infty, 2] \cup \{5\}$ in **R**
 - (b) The set of integers **Z** in **R**.
 - (c) $\{\vec{x} \in \mathbf{R}^n \mid 4 \le |\vec{x}| \le 7\}$ in \mathbf{R}^n .
 - (d) $\{(x, y) \in \mathbb{R}^2 | e^{x+y} \in (1, 5)\}$ in \mathbb{R}^2 . (e) $\{\frac{1}{n} | n = 1, 2, ...\}$ in \mathbb{R} .
- (8) Let $S \subset \mathbb{R}^n$ be convex, and $\vec{x}, \vec{y}, \vec{z} \in S$. Let $a, b, c \in \mathbb{R}$ be such that $0 \le a, b, c \le 1$ and a + b + c = 1. Show that $a\vec{x} + b\vec{y} + c\vec{z} \in S$. Extra: Can you think (and prove) a generalization for an arbitrary number of vectors?.