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In the optimization problems we have discussed so far, our goal was to find numerical values
of a number of variables x1, . . . , xn that optimize a certain quantity F that depends on x1, . . . , xn.
We now discuss optimization problems whose goal is to find functions x1, . . . , xn that opitimize
a certain quantity F that depends on x1, . . . , xn.

1. EXAMPLES

To convince you that these problems arise naturally, here are some examples.

1.1. Production planning. A firm receives an order to produce B units of a good in time T .
They would like to fulfill the order in the lowest cost. The cost comes from two sources

(1) Storage costs amount a per unit good per unit time.
(2) Production at rate r costs amount b per unit good.

How should the firm plan its production so that the total cost is minimized?
Let us translate the problem into a purely mathematical problem. Denote by x(t) the amount

produced up to time t. This is the function that we want to find. Let us write the total cost
incurred in terms of x(t). For a small time period [t, t+∆t], the cost incurred is approximately
the following:

(1) Storage: a · x(t) ·∆t
(2) Production: b · x ′(t) · x ′(t)∆t.

Summing over the entire interval and taking the limit as ∆t → 0, we arrive at the total cost

Total cost=

∫ T

0

ax(t) + bx ′(t)2 d t.

The optimization problem is then the following:

Problem 1. Find a function x(t) that minimizes
∫ T

0

ax(t) + bx ′(t)2 d t,

subject to
x(0) = 0 x(T ) = B.

1.2. The brachistochrone problem. This problem in physics spawned the development of
calculus of variations. The goal is to design a path between two given points A and B such
that a ball that slides along this path under gravity takes the least time to go from A to B (see
Figure 1).

Let us translate the problem into a purely mathematical problem. Suppose the coordinates
of A are (0, a) and the coordinates of B are (b, 0). Suppose the path is given by the graph of a
function y of x . Let us write the time taken for the ball to roll along this path. Suppose the
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ball is at (x , y) and rolls to (x +∆x , y −∆y) in time ∆t. Assume all the ∆’s are small. The
distance travelled is

p

∆x2+∆y2 =
p

1+ (y ′)2 ·∆x .

The speed v is given by equating the kinetic energy with the loss in the potential energy (we
are assuming that the initial speed is zero):

1

2
mv2 = mg(a− y)

v =
p

2g(a− y).

So the time taken is

∆=

p

1+ (y ′)2 ·∆x
p

2g(a− y)
.

Summing over the whole interval and taking the limit as ∆x → 0 gives the total time

Total time=

∫ b

0

È

1+ (y ′)2

2g(a− y)
d x .

This leads to the following problem.

Problem 2. Find a function y(x) that minimizes
∫ b

0

È

1+ (y ′)2

2g(a− y)
d x

subject to
y(0) = a y(b) = 0.

Exercise 3. How would the problem change if the ball was launched with some non-zero initial
speed v0?

FIGURE 1. Which path leads to the quickest slide?

1.3. Investment strategy. Suppose we are planning an investment and consumption strategy,
in the following setup. A capital K yields returns at a rate F(K). The returns can be spent or re-
invested, or a combination of both. Spending results in enjoyment, or utility, and re-investment
results in greater K for greater future returns. Suppose consumption at rate C yields utility
U(C). Our goal is to devise a consumption/re-investment strategy that will maximize total
utility.
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Denote by K(t) the invested capital at time t, by C(t) the rate of consumption at time t and
by R(t) the rate of re-investment at time t. Then we have the equation

F(K(t)) = C(t) + R(t),

which expresses the fact that the returns from capital K(t) are partially consumed and partially
re-invested. Furthermore, the rate of re-investment is precisely the rate of growth of K(t).
Therefore, we have

K ′(t) = R(t).

Using the two equations above, we can write

C(t) = F(K(t))− K ′(t).

We are given the initial value K(0) and the utility function U . Our goal is to figure out the
function K(t) that leads to the maximum total utility

∫ t

0

U(C(t)) d t.

Therefore the problem is the following.

Problem 4. Suppose K0, U, F, and T are given. Find a function K(t) that maximizes
∫ T

0

U
�

F(K(t))− K ′(t)
�

d t,

subject to K(0) = K0.

Here is a specific example of the above. Suppose the rate of returns F(K) is linear, say
F(K) = aK, and the utility function is U(C) = ln C . (Typically, the utility function will be
increasing but concave, reflecting the diminishing marginal utility of consumption.) Then we
want to find the K(t) that maximizes

∫ T

0

ln (aK(t)− K ′(t)) d t.

To get some feel for the above, suppose we decide to re-invest the entire returns. Then we
have C(t) = 0 and therefore K ′(t) = cK(t). The function that satisfies this equation, subject to
the initial condition that K(0) = K0 is K(t) = K0ec t . So, if we re-invest the entire returns then
the capital grows exponentially but the overall utility is zero. This is clearly not the optimum.

Suppose we decide to spend the entire returns. Then we have C(t) = cK(t) and K ′(t) = 0.
Therefore, K(t) is constant, namely K0. The overall utility is

∫ T

0

ln (cK0) d t = ln (cK0) · T,

which is nonzero but may not be optimal.
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2. THE GENERAL PROBLEM

Suppose we are given real numbers a, b, A, B, and a function F(u, v, w). Set

F1(u, v, w) =
∂ F

∂ u
(u, v, w),

F2(u, v, w) =
∂ F

∂ v
(u, v, w),

F3(u, v, w) =
∂ F

∂ w
(u, v, w).

Let us denote by ẋ the derivative d x
d t

, by ẍ the double derivative d2 x
d t2 , and so on. Assume that all

functions under considerations behave nicely (for example, are infinitely differentiable).

Problem 5 (General variations problem). Find a function x(t) that maximizes or minimizes

∫ b

a

F(t, x , ẋ) d t

subject to x(a) = A and x(b) = B.

3. THE EULER–LAGRANGE EQUATION

Theorem 6. If x achieves the optimum in Problem 5, then it satisfies the Euler–Lagrange equation

F2(t, x , ẋ)−
d

d t
�

F3(t, x , ẋ)
�

= 0.

Proof. Let h be any function with h(a) = h(b) = 0. Then for any ε, the function x + εh also
satisfies the boundary conditions. Let

G(ε) =

∫ b

a

F(t, x + εh, ẋ + εḣ) d t.
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Since x is an opitimum solution to Problem 5, ε= 0 is the optimum value of G. Therefore, we
must have dG

dε
(0) = 0. Let us calculate this derivative:

dG

dε
=

d

dε

∫ b

a

F(t, x + εh, ẋ + εḣ) d t

=

∫ b

a

d

dε
F(t, x + εh, ẋ + εḣ) d t

=

∫ b

a

F1(t, x , ẋ) · 0+ F2(t, x , ẋ)h+ F3(t, x , ẋ)ḣ d t at ε= 0 by the chain rule

=

∫ b

a

F2(t, x , ẋ)h d t + F3(t, x , ẋ)h(t)|ba −
∫ b

a

d

d t
�

F3(t, x , ẋ)
�

h d t by parts

=

∫ b

a

�

F2(t, x , ẋ)−
d

d t
�

F3(t, x , ẋ)
�

�

h d t since h(a) = h(b) = 0.

= 0.

Now, it is easy to see that if
∫ b

a
f (t)h(t) d t = 0 for all functions h(t) satisfying h(a) = h(b) =

0, then we must have f (t) = 0. Therefore, we conclude that

F2(t, x , ẋ)−
d

d t
�

F3(t, x , ẋ)
�

= 0.

�

4. USING THE EULER–LAGRANGE EQUATION

Let us use the Euler–Lagrange equation to solve (some of) the problems posed in § 1.

4.1. Production planning.

Problem 7. Find a function x(t) that minimizes
∫ T

0

ax + bẋ2 d t,

subject to
x(0) = 0 x(T ) = B.

Solution. We have F(u, v, w) = av + bw2, so F2(u, v, w) = a and F3(u, v, w) = 2bw. The
Euler–Lagrange equation is

0= F2(t, x , ẋ)−
d

d t
F3(t, x , ẋ)

= a−
d

d t
(2bẋ)

= a− 2bẍ .

That is, ẍ = a/2b. By integrating twice, we get

x(t) = (a/4b)t2+ c t + d,
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where c and d are constants to be determined using the boundary conditions. The condition
x(0) = 0 gives d = 0. The condition x(T ) = B gives

c =
B

T
−

aT

4b
.

So we get

x(t) =
a

4b
t2+

�

B

T
−

aT

4b

�

t.

�

Remark 8. Strictly speaking, the only conclusion we can draw from solving the Euler–Lagrange
equation is that if a minimizer x(t) exists, then it must be the one we found. But let us assume
that it does (which we will not prove).

Note some qualitative features of the solution. If a = 0 (no storage cost), then the optimal
strategy is to produce at a constant rate, which means that the graph of x(t) is a straight line.
If a > 0, then the graph of x(t) is a parabola, which gets steeper as a/4b increases. So, for
a� b (negligible production cost compared to storage), the optimal strategy is to do most of
the production close to the deadline.

4.2. Investment planning. Let us take the rate of returns to be proportional to the capital and
the utility function to be the logarithm. Let us also assume that both the initial and the final
value of the capital is given. For simplicity, let us assume T = 1.

Problem 9. Find a function K(t) that maximizes
∫ 1

0

ln(cK − K̇) d t,

subject to K(0) = K0 and K(1) = K1.

Solution. Here F(u, v, w) = ln(cv−w), So

F2(u, v, w) = c/(cv−w)
F3(u, v, w) =−1/(cv−w).

The Euler–Lagrange equation becomes

0=
c

cK − K̇
−

d

d t

� −1

cK − K̇

�

=
c

cK − K̇
−

cK̇ − K̈

(cK − K̇)2

0= c(cK − K̇)− cK̇ + K̈

0= K̈ − 2cK̇ + c2K .

The solution to this differential equation is

K(t) = Aec t + Btec t ,

for constants A and B to be determined from the boundary conditions. The consumption
function is

C(t) =−Bec t .
6



Let us look at two interesting special cases. The first is K1 = 0. This will be the case if there
are no financial obligations at t = 1. In this case A= K0 and A+ B = 0, so B =−K0. Therefore,
we have

K(t) = K0(1− t)ec t .
The consumption function is

C(t) = K0ec t .
The second case is K1 = K0. This will be the case if the initial capital is to be returned at

t = 1. In this case A= K0 and ec(A+ B) = K0, so B =−(1− e−c)K0. Therefore, we have

K(t) = K0ec t �1− (1− e−c)t
�

.

The consumption function is
C(t) = (1− e−c)K0ec t .

Interestingly, the consumption function is exponential in both cases. In the second case, only
the leading coefficient is slightly smaller.

Let us compare the optimum strategy in the second case with the naïve strategy of consuming
all the returns immediately. In both cases, we have K(0) = K(1) = K0. The total utility in the
naïve strategy is

ln(cK0) = ln c+ ln K0.
The total utility in the optimum strategy is

∫ 1

0

ln(1− e−c) + ln K0+ c t d t = ln(1− e−c) + ln K0+ c/2.

Can you see that the optimum strategy outperforms the naïve one? �
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