MODERN ALGEBRA 2: PRACTICE PROBLEMS FOR MIDTERM 1

(1) Find (with proof) the kernel of the map $\mathbf{Q}[x] \rightarrow \mathbf{C}$ given by evaluation at $(i+2)$.
(2) Find (with proof) the kernel of the map $\mathbf{Z}[x] \rightarrow \mathbf{Z}_{5}$ given by $x \mapsto-1$.
(3) Determine the units in (1) $\mathbf{Z} / 12 \mathbf{Z}$, (2) $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 4 \mathbf{Z}$, (3) $\mathbf{Z}[\sqrt{-2}]$.
(4) Find the gcd of $x^{2}+x+1$ and $x^{4}+3 x^{3}+x^{2}+7 x+5$ when considered as polynomials in $\mathbf{Q}[x]$ and when considered as polynomials in $\mathbf{F}_{7}[x]$.
(5) Give an example of a maximal ideal of $\mathbf{Z}[x]$. Give an example of a prime ideal of $\mathbf{Z}[x]$ which is not maximal. Give an example of an ideal of $\mathbf{Z}[x]$ which is not a prime ideal.
(6) Do the same problem for $\mathbf{F}[x, y]$, where \mathbf{F} is your favorite field.
(7) Using $\mathbf{Z} / 91 \mathbf{Z} \cong \mathbf{Z} / 7 \mathbf{Z} \times \mathbf{Z} / 13 \mathbf{Z}$ compute $5^{26}(\bmod 91)$.
(8) Describe the ring obtained from \mathbf{Z} by adjoining α satisfying the two relations $2 \alpha=$ 6 and $6 \alpha=15$.
(9) Construct a finite field with 4 elements, 9 elements, 125 elements.
(10) Determine the maximal ideals of $\mathbf{C}[x] / x^{2}(x-1)$ and $\mathbf{R}[x] /\left(x^{2}-3 x+2\right)$.
(11) Describe the ring $\mathbf{Z}[i] /(i+3)$. Is it a field?
(12) Let $\phi: R \rightarrow S$ be a ring homomorphism. Let I be an ideal of S. Show that $\phi^{-1}(I)$ is an ideal of R. If I is principal, must $\phi^{-1}(I)$ be principal? If I is maximal, must $\phi^{-1}(I)$ be maximal? If I is prime, must $\phi^{-1}(I)$ be prime? Prove or give counterexamples.
(13) The same questions assuming furthermore that ϕ is surjective.
(14) Let $a \in \mathbf{F}_{p}$. Factor $x^{p}-a$ in $\mathbf{F}_{p}[x]$.
(15) Is $\mathbf{Z}[\sqrt{-5}]$ a PID?
(16) Show that $(i+2)$ and $(i-2)$ are primes in $\mathbf{Z}[i]$.
(17) In general, show that if $a, b \in \mathbf{Z}$ and $a^{2}+b^{2}$ is prime, then $a+i b$ is prime in $\mathbf{Z}[i]$.

