MODERN ALGEBRA 2: PRACTICE PROBLEMS FOR MIDTERM 1

- (1) Find (with proof) the kernel of the map $\mathbf{Q}[x] \rightarrow \mathbf{C}$ given by evaluation at (i + 2).
- (2) Find (with proof) the kernel of the map $\mathbf{Z}[x] \to \mathbf{Z}_5$ given by $x \mapsto -1$.
- (3) Determine the units in (1) Z/12Z, (2) $Z/2Z \times Z/4Z$, (3) $Z[\sqrt{-2}]$.
- (4) Find the gcd of $x^2 + x + 1$ and $x^4 + 3x^3 + x^2 + 7x + 5$ when considered as polynomials in $\mathbf{Q}[x]$ and when considered as polynomials in $\mathbf{F}_7[x]$.
- (5) Give an example of a maximal ideal of **Z**[*x*]. Give an example of a prime ideal of **Z**[*x*] which is not maximal. Give an example of an ideal of **Z**[*x*] which is not a prime ideal.
- (6) Do the same problem for $\mathbf{F}[x, y]$, where **F** is your favorite field.
- (7) Using $\mathbb{Z}/91\mathbb{Z} \cong \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/13\mathbb{Z}$ compute $5^{26} \pmod{91}$.
- (8) Describe the ring obtained from **Z** by adjoining α satisfying the two relations $2\alpha = 6$ and $6\alpha = 15$.
- (9) Construct a finite field with 4 elements, 9 elements, 125 elements.
- (10) Determine the maximal ideals of $\mathbf{C}[x]/x^2(x-1)$ and $\mathbf{R}[x]/(x^2-3x+2)$.
- (11) Describe the ring $\mathbf{Z}[i]/(i+3)$. Is it a field?
- (12) Let $\phi: R \to S$ be a ring homomorphism. Let *I* be an ideal of *S*. Show that $\phi^{-1}(I)$ is an ideal of *R*. If *I* is principal, must $\phi^{-1}(I)$ be principal? If *I* is maximal, must $\phi^{-1}(I)$ be maximal? If *I* is prime, must $\phi^{-1}(I)$ be prime? Prove or give counterexamples.
- (13) The same questions assuming furthermore that ϕ is surjective.
- (14) Let $a \in \mathbf{F}_p$. Factor $x^p a$ in $\mathbf{F}_p[x]$.
- (15) Is $Z[\sqrt{-5}]$ a PID?
- (16) Show that (i + 2) and (i 2) are primes in $\mathbb{Z}[i]$.
- (17) In general, show that if $a, b \in \mathbb{Z}$ and $a^2 + b^2$ is prime, then a + ib is prime in $\mathbb{Z}[i]$.