Modern Algebra 2: Midterm 1

Feb 20, 2014

Name: \qquad

- Write your answers in the space provided. Continue on the back for more space.
- Justify your answers unless asked otherwise.
- There are 6 questions.
- Good luck!

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	60	

1. (a) (5 points) Define an ideal.

Solution: An ideal of a ring R is a subset $I \subset R$ such that $0 \in I, I$ is closed under addition, and if $i \in I$ and $r \in R$ then $r i \in R$.
(b) (5 points) Let $\phi: R \rightarrow S$ be a ring homomorphism. Prove that $\operatorname{ker} \phi$ is an ideal.

Solution: Let $I=\operatorname{ker} \phi$. Since $\phi(0)=0$, we get $0 \in R$. If $a, b \in I$, then $\phi(a+b)=\phi(a)+\phi(b)=0$ implies that $a+b \in I$. If $i \in I$ and $r \in R$, then $\phi(r i)=\phi(r) \phi(i)=0$ implies that $r i \in I$. Thus, I is an ideal.
2. Determine all the ideals of the following rings:
(a) (5 points) $\mathbf{R}[x] /\left(x^{2}-3 x+2\right)$

Solution: By the correspondence theorem, the ideals of $\mathbf{R}[x] /\left(x^{2}-3 x+2\right)$ are in one to one correspondence with the ideals of $\mathbf{R}[x]$ that contain $\left(x^{2}-\right.$ $3 x+2)$. Since \mathbf{R} is a field, the ideals of $\mathbf{R}[x]$ are all principal. An ideal $(p(x))$ contains $x^{2}-3 x+2$ if and only if $p(x)$ divides $x^{2}-3 x+2$. Since $x^{2}-3 x+2=$ $(x-1)(x-2)$, up to scalars, the only possibilities for $p(x)$ are $1,(x-1)$, $(x-2)$, and $(x-1)(x-2)$. They correspond to the ideals $(1),(\bar{x}-1),(\bar{x}-2)$ and (0) in $\mathbf{R}[x] /\left(x^{2}-3 x+2\right)$.
(b) (5 points) $\mathbf{R} \times \mathbf{R}$

Solution: There are many ways to do this; here is a slick way. By the Chinese remainder theorem,

$$
\mathbf{R}[x] /\left(x^{2}-3 x+2\right) \cong \mathbf{R}[x] /(x-1) \times \mathbf{R}[x] /(x-2) \cong \mathbf{R} \times \mathbf{R}
$$

The isomorphism $\mathbf{R}[x] /\left(x^{2}-3 x+2\right) \cong \mathbf{R} \times \mathbf{R}$ is given by $p(x) \mapsto(p(1), p(2))$. Therefore, we can use the previous part to conclude that the ideals of $\mathbf{R} \times \mathbf{R}$ are generated by $(1,1),(0,1),(1,0)$ and $(0,0)$. More explicitly, these are $\mathbf{R} \times \mathbf{R},\{0\} \times \mathbf{R}, \mathbf{R} \times\{0\}$ and $\{0\} \times\{0\}$.
3. (10 points) Let $\phi: R \rightarrow S$ be a ring homomorphism and $P \subset S$ a prime ideal. Show that $\phi^{-1}(P)$ is a prime ideal of R. Also give a counterexample to show that the statement is false if we replace 'prime' by 'maximal' everywhere.

Solution: Let $Q=\phi^{-1}(P)$. Take $a, b \in R$ such that $a b \in Q$. We must prove that $a \in Q$ or $b \in Q$. Since $a b \in Q$, we have $\phi(a b)=\phi(a) \phi(b) \in P$. Since P is prime, we must have $\phi(a) \in P$ or $\phi(b) \in P$, which means that $a \in Q$ or $b \in Q$.
For a counterexample for the same statement for 'maximal,' consider the inclusion $i: \mathbf{Z} \rightarrow \mathbf{Q}$. The ideal $\{0\} \subset \mathbf{Q}$ is maximal, but its preimage (which is also $\{0\}$) is not maximal.
4. Let $R=\mathbf{Z}[x] /\left(x^{2}+x+1\right)$.
(a) (5 points) Describe a ring homomorphism $\phi: R \rightarrow \mathbf{C}$.

Solution: A ring homomorphism $R \rightarrow \mathbf{C}$ corresponds to a ring homomorphism $\mathbf{Z}[x] \rightarrow \mathbf{C}$ under which $\left(x^{2}+x+1\right)$ is mapped to zero. A ring homomorphism $\mathbf{Z}[x] \rightarrow \mathbf{C}$ is specified completely by the image of x, which we call α. Under such a homomorphism $\left(x^{2}+x+1\right)$ is mapped to zero if and only if $\alpha^{2}+\alpha+1=0$. Therefore, we can choose $\alpha=\frac{-1+\sqrt{-3}}{2}$ or $\frac{-1-\sqrt{-3}}{2}$. Either choice gives us a homomorphism $R \rightarrow \mathbf{C}$.
(b) (5 points) Show that the equation $y^{2}+3=0$ has a solution in R.

Hint: You can use the previous part to find it.

Solution: Taking a hint from $x \mapsto \frac{-1+\sqrt{-3}}{2}$, we see that $2 x+1 \mapsto \sqrt{-3}$, and indeed $y=(2 x+1)$ satisfies $y^{2}+3=0$ in R. To check, we have

$$
y^{2}=(2 x+1)^{2}=4 x^{2}+4 x+1=4\left(x^{2}+x+1\right)-3=-3 \text { in } R .
$$

5. Describe the following rings in as simple a way as you can:
(a) (5 points) $\mathbf{Z}[x] /(2 x-6,6 x-15)$

Solution: Since $3=(6 x-15)-3(2 x-6)$, we have $3 \in(2 x-6,6 x-15)$. Therefore,

$$
\mathbf{Z}[x] /(2 x-6,6 x-15)=\mathbf{Z}[x] /(3,2 x-6,6 x-15)
$$

Going modulo 3 first, we get

$$
\mathbf{Z}[x] /(3,2 x-6,6 x-15)=\mathbf{F}_{3}[x] /(2 x)
$$

Since 2 is a unit in \mathbf{F}_{3}, we have $(2 x)=(x)$. Via the evaluation $x \mapsto 0$, we have $\mathbf{F}_{3}[x] /(x) \cong \mathbf{F}_{3}$. So, $\mathbf{Z}[x] /(2 x-6,6 x-15) \cong \mathbf{F}_{3}$.
(b) (5 points) $\mathbf{Z}[\sqrt{3}] /(4+\sqrt{3})$

Solution: We have

$$
\begin{aligned}
\mathbf{Z}[\sqrt{3}] /(4+\sqrt{3}) \cong \mathbf{Z}[x] /\left(x^{2}+3,4+x\right) \\
\cong \mathbf{Z} /(13) \text { by } x \mapsto-4
\end{aligned}
$$

6. (10 points) Let $R=\mathbf{Z}[\sqrt{-2}]$. Show that 11 is not a prime element of R. Can you find a prime factor of 11 ? Be sure to justify that the factor you found is a prime.
Hint: It may be helpful to think of $\mathbf{Z}[\sqrt{-2}]$ as $\mathbf{Z}[x] /\left(x^{2}+2\right)$.

Solution: To show that 11 is not a prime, we try to show that $R /(11)$ is not a domain. We have

$$
\begin{aligned}
R /(11) & \cong \mathbf{Z}[x] /\left(11, x^{2}+2\right) \\
& \cong \mathbf{F}_{11}[x] /\left(x^{2}+2\right)
\end{aligned}
$$

But $\left(x^{2}+2\right)=(x-3)(x+3)$ in $\mathbf{F}_{11}[x]$. Therefore, $R /(11) \cong \mathbf{F}_{11}[x] /\left(x^{2}+2\right)$ is not a domain.
From the equation $(x-3)(x+3)=0(\bmod 11)$ in R, we take a hint for factoring 11. Namely, we know that $(\sqrt{-2}-3)(\sqrt{-2}+3)$ is divisible by 11 in R, and indeed we get

$$
11=(3+\sqrt{-2})(3-\sqrt{-2})
$$

Let us show that one of these factors is a prime. Again, we compute $R /(3+\sqrt{-2})$. We have

$$
\begin{aligned}
R /(3+\sqrt{-2}) & \cong \mathbf{Z}[x] /\left(x^{2}+2,3+x\right) \\
& \cong \mathbf{Z} /(11) \text { via } x \mapsto-3
\end{aligned}
$$

Since $R /(3+\sqrt{-2}) \cong \mathbf{Z} /(11)$ is a domain, we conclude that $3+\sqrt{-2}$ is prime.

