Modern Algebra 2: Midterm 1

Feb 20, 2014

Name: _____

- Write your answers in the space provided. Continue on the back for more space.
- Justify your answers unless asked otherwise.
- There are 6 questions.
- Good luck!

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	60	

1. (a) (5 points) Define an ideal.

Solution: An ideal of a ring *R* is a subset $I \subset R$ such that $0 \in I$, *I* is closed under addition, and if $i \in I$ and $r \in R$ then $ri \in R$.

(b) (5 points) Let $\phi \colon R \to S$ be a ring homomorphism. Prove that ker ϕ is an ideal.

Solution: Let $I = \ker \phi$. Since $\phi(0) = 0$, we get $0 \in R$. If $a, b \in I$, then $\phi(a+b) = \phi(a) + \phi(b) = 0$ implies that $a+b \in I$. If $i \in I$ and $r \in R$, then $\phi(ri) = \phi(r)\phi(i) = 0$ implies that $ri \in I$. Thus, I is an ideal.

2. Determine all the ideals of the following rings:

(a) (5 points)
$$\mathbf{R}[x]/(x^2 - 3x + 2)$$

Solution: By the correspondence theorem, the ideals of $\mathbf{R}[x]/(x^2 - 3x + 2)$ are in one to one correspondence with the ideals of $\mathbf{R}[x]$ that contain $(x^2 - 3x + 2)$. Since **R** is a field, the ideals of $\mathbf{R}[x]$ are all principal. An ideal (p(x)) contains $x^2 - 3x + 2$ if and only if p(x) divides $x^2 - 3x + 2$. Since $x^2 - 3x + 2 = (x - 1)(x - 2)$, up to scalars, the only possibilities for p(x) are 1, (x - 1), (x - 2), and (x - 1)(x - 2). They correspond to the ideals $(1), (\overline{x} - 1), (\overline{x} - 2)$ and (0) in $\mathbf{R}[x]/(x^2 - 3x + 2)$.

(b) (5 points) $\mathbf{R} \times \mathbf{R}$

Solution: There are many ways to do this; here is a slick way. By the Chinese remainder theorem,

$$\mathbf{R}[x]/(x^2 - 3x + 2) \cong \mathbf{R}[x]/(x - 1) \times \mathbf{R}[x]/(x - 2) \cong \mathbf{R} \times \mathbf{R}.$$

The isomorphism $\mathbf{R}[x]/(x^2 - 3x + 2) \cong \mathbf{R} \times \mathbf{R}$ is given by $p(x) \mapsto (p(1), p(2))$. Therefore, we can use the previous part to conclude that the ideals of $\mathbf{R} \times \mathbf{R}$ are generated by (1,1), (0,1), (1,0) and (0,0). More explicitly, these are $\mathbf{R} \times \mathbf{R}$, $\{0\} \times \mathbf{R}$, $\mathbf{R} \times \{0\}$ and $\{0\} \times \{0\}$. 3. (10 points) Let $\phi: R \to S$ be a ring homomorphism and $P \subset S$ a prime ideal. Show that $\phi^{-1}(P)$ is a prime ideal of *R*. Also give a counterexample to show that the statement is false if we replace 'prime' by 'maximal' everywhere.

Solution: Let $Q = \phi^{-1}(P)$. Take $a, b \in R$ such that $ab \in Q$. We must prove that $a \in Q$ or $b \in Q$. Since $ab \in Q$, we have $\phi(ab) = \phi(a)\phi(b) \in P$. Since P is prime, we must have $\phi(a) \in P$ or $\phi(b) \in P$, which means that $a \in Q$ or $b \in Q$.

For a counterexample for the same statement for 'maximal,' consider the inclusion $i: \mathbb{Z} \to \mathbb{Q}$. The ideal $\{0\} \subset \mathbb{Q}$ is maximal, but its preimage (which is also $\{0\}$) is not maximal.

Modern Algebra 2 (Spring 2014) Midterm I

4. Let $R = \mathbf{Z}[x]/(x^2 + x + 1)$.

(a) (5 points) Describe a ring homomorphism $\phi \colon R \to \mathbf{C}$.

Solution: A ring homomorphism $R \to \mathbf{C}$ corresponds to a ring homomorphism $\mathbf{Z}[x] \to \mathbf{C}$ under which $(x^2 + x + 1)$ is mapped to zero. A ring homomorphism $\mathbf{Z}[x] \to \mathbf{C}$ is specified completely by the image of x, which we call α . Under such a homomorphism $(x^2 + x + 1)$ is mapped to zero if and only if $\alpha^2 + \alpha + 1 = 0$. Therefore, we can choose $\alpha = \frac{-1+\sqrt{-3}}{2}$ or $\frac{-1-\sqrt{-3}}{2}$. Either choice gives us a homomorphism $R \to \mathbf{C}$.

(b) (5 points) Show that the equation $y^2 + 3 = 0$ has a solution in *R*. *Hint: You can use the previous part to find it.*

Solution: Taking a hint from $x \mapsto \frac{-1+\sqrt{-3}}{2}$, we see that $2x + 1 \mapsto \sqrt{-3}$, and indeed y = (2x + 1) satisfies $y^2 + 3 = 0$ in *R*. To check, we have

$$y^2 = (2x+1)^2 = 4x^2 + 4x + 1 = 4(x^2 + x + 1) - 3 = -3$$
 in R.

Modern Algebra 2 (Spring 2014) Midterm I

- 5. Describe the following rings in as simple a way as you can:
 - (a) (5 points) $\mathbf{Z}[x]/(2x-6, 6x-15)$

Solution: Since 3 = (6x - 15) - 3(2x - 6), we have $3 \in (2x - 6, 6x - 15)$. Therefore,

$$Z[x]/(2x-6, 6x-15) = Z[x]/(3, 2x-6, 6x-15).$$

Going modulo 3 first, we get

$$\mathbf{Z}[x]/(3,2x-6,6x-15) = \mathbf{F}_3[x]/(2x).$$

Since 2 is a unit in \mathbf{F}_3 , we have (2x) = (x). Via the evaluation $x \mapsto 0$, we have $\mathbf{F}_3[x]/(x) \cong \mathbf{F}_3$. So, $\mathbf{Z}[x]/(2x-6, 6x-15) \cong \mathbf{F}_3$.

(b) (5 points) $Z[\sqrt{3}]/(4+\sqrt{3})$

Solution: We have

$$Z[\sqrt{3}]/(4+\sqrt{3}) \cong Z[x]/(x^2+3,4+x)$$

 $\cong Z/(13)$ by $x \mapsto -4$.

6. (10 points) Let $R = \mathbb{Z}[\sqrt{-2}]$. Show that 11 is not a prime element of R. Can you find a prime factor of 11? Be sure to justify that the factor you found is a prime. *Hint: It may be helpful to think of* $\mathbb{Z}[\sqrt{-2}]$ *as* $\mathbb{Z}[x]/(x^2+2)$.

Midterm I

Solution: To show that 11 is not a prime, we try to show that R/(11) is not a domain. We have

$$R/(11) \cong \mathbf{Z}[x]/(11, x^2 + 2)$$

 $\cong \mathbf{F}_{11}[x]/(x^2 + 2).$

But $(x^2 + 2) = (x - 3)(x + 3)$ in $\mathbf{F}_{11}[x]$. Therefore, $R/(11) \cong \mathbf{F}_{11}[x]/(x^2 + 2)$ is not a domain.

From the equation $(x - 3)(x + 3) = 0 \pmod{11}$ in *R*, we take a hint for factoring 11. Namely, we know that $(\sqrt{-2} - 3)(\sqrt{-2} + 3)$ is divisible by 11 in *R*, and indeed we get

$$11 = (3 + \sqrt{-2})(3 - \sqrt{-2}).$$

Let us show that one of these factors is a prime. Again, we compute $R/(3 + \sqrt{-2})$. We have

$$R/(3+\sqrt{-2}) \cong \mathbb{Z}[x]/(x^2+2,3+x)$$
$$\cong \mathbb{Z}/(11) \text{ via } x \mapsto -3.$$

Since $R/(3 + \sqrt{-2}) \cong \mathbb{Z}/(11)$ is a domain, we conclude that $3 + \sqrt{-2}$ is prime.