## MODERN ALGEBRA 2: HOMEWORK 9

Note: The Galois group of a polynomial means the Galois group of its splitting field.
(1) Use Galois theory to show that $5^{1 / 3}$ does not lie in $\mathbf{Q}\left(2^{1 / 3}\right)$.

Hint: Work in $\mathbf{Q}\left(\omega, 2^{1 / 3}\right)$.
(2) Let $p$ be a prime. Show that the Galois group of $x^{p}-2$ is isomorphic to the group of matrices

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right),
$$

where $a, b \in \mathbf{F}_{p}$ and $a \neq 0$.
(3) Suppose $f(x) \in \mathbf{Q}[x]$ is an irreducible quartic whose Galois group is $S_{4}$. Let $\alpha$ be a root of $f(x)$, and let $K=\mathbf{Q}(\alpha)$. Show that $K / \mathbf{Q}$ is an extension of degree 4 and $K$ has no subfields other than $K$ and $\mathbf{Q}$. (Among other things, this gives many examples of numbers of degree four that are not constructible.)
(4) Suppose $f(x) \in \mathbf{Q}[x]$ is a cubic whose Galois group is cyclic of order 3. Show that all roots of $f(x)$ must be real.
(5) (Biquadratic extensions) Let $K=\mathbf{Q}(\sqrt{a}, \sqrt{b})$, where $a, b \in \mathbf{Q}$ and $\sqrt{a}, \sqrt{b} \notin \mathbf{Q}$. Show that $K / \mathbf{Q}$ is Galois with Galois group $\mathbf{Z} / 2 \mathbf{Z}$ or $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$. Conversely, show that any Galois extension $K / \mathbf{Q}$ with Galois group $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$ has the form $K=\mathbf{Q}(\sqrt{a}, \sqrt{b})$.
(6) Let $\zeta_{p}=e^{2 \pi i / p}$. Show that $\mathbf{Q}\left(\zeta_{p}\right)$ contains a unique quadratic extension of $\mathbf{Q}$.
(7) Let $K=\mathbf{Q}\left(i, 2^{1 / 4}\right)$. Show that $K / \mathbf{Q}$ is Galois and is Galois group is $D_{4}$ (the Dihedral group with 8 elements).

