MODERN ALGEBRA 2: HOMEWORK 8

Splitting fields and Galois groups

- (1) Determie the degrees of the splitting fields of the following polynomials over Q:
 (a) x⁴ 1 (b) x⁴ + 1.
- (2) Let $\omega = e^{2\pi i/3}$. Show that the extension $\mathbf{Q} \subset \mathbf{Q}(\omega, \sqrt[3]{2})$ is Galois and its Galois group is isomorphic to S_3 .
- (3) Let $F \subset K$ be a splitting field of $p(x) \in F[x]$ and set $n = \deg(p(x))$. Show that $\operatorname{Gal}(K/F)$ is a subgroup of S_n .

FINITE FIELDS AND GALOIS GROUPS

- (4) Let $F \subset K$ be finite fields where $|F| = p^m$ and $|K| = p^n$. Show that *m* divides *n*.
- (5) Conversely, show that if *m* divides *n*, then the subset

$$\{x \in K \mid x^{p^m} = x\} \subset K$$

is a subfield of order p^m .

(6) Let $F \subset K$ be finite fields where $|F| = p^m$ and $|K| = p^n$. Show that K/F is Galois, and Gal(K/F) is cyclic of order n/m, generated by the automorphism

$$x \mapsto x^{p^m}$$

SEPARABILITY AND PERFECT FIELDS

- (7) Let *F* be a field of characteristic *p* and $f(x) \in F[x]$ a polynomial. Show that Df(x) = 0 if and only if $f(x) = g(x^p)$ for some polynomial $g(x) \in F[x]$.
- (8) *F* called *perfect* if the Frobenius homomorphism $F \to F$ given by $x \to x^p$ is an isomorphism. Show that a finite field is perfect.
- (9) Let *F* be a perfect field and $f(x) \in F[x]$ an irreducible polynomial. Show that f(x) is separable.