MODERN ALGEBRA 2: HOMEWORK 6

In the last problem set, you showed the irreducibility of several specific polynomials. In this problem set, you will prove two general irreducibility criteria.
(1) Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$ be a nonconstant polynomial in $\mathbf{Z}[x]$ and $p \in \mathbf{Z}$ a prime. Suppose p does not divide a_{n} and $f(x)$ is irreducible modulo p. Show that $f(x)$ is irreducible in $\mathbf{Q}[x]$. Exhibit a counterexample to show that the conclusion may fail if p divides a_{n}.
(2) (Eisenstein's criterion) Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$ be a polynomial in $\mathbf{Z}[x]$ and $p \in \mathbf{Z}$ a prime. Suppose p does not divide a_{n}, p divides a_{i} for all $i<n$, and p^{2} does not divide a_{0}. Show that $f(x)$ is irreducible $\mathbf{Q}[x]$.
(3) As an application, show that $1+x+\cdots+x^{p-1}$ is irreducible in $\mathbf{Q}[x]$ (Hint: Replace x by $x+1$).
Let us exhibit a polynomial that is reducible modulo every prime p but irreducible in $\mathbf{Q}[x]$.
(4) Let $a, b \in \mathbf{F}_{p}$ be nonzero. Show that $a b$ is a square in \mathbf{F}_{p} if and only if either both a and b are squares or both a and b are non-squares.
(5) Consider

$$
\begin{aligned}
f(x) & =(x-\sqrt{2}-\sqrt{3})(x+\sqrt{2}+\sqrt{3})(x+\sqrt{2}-\sqrt{3})(x-\sqrt{2}+\sqrt{3}) \\
& =\left(x^{2}-1\right)^{2}-8 x^{2} \\
& =\left(x^{2}+1\right)^{2}-12 x^{2} \\
& =\left(x^{2}-5\right)^{2}-24 .
\end{aligned}
$$

We know that $f(x)$ is irreducible in $\mathbf{Q}[x]$. Use the previous problem to show that $f(x)$ is reducible modulo every prime p.
Some problems from the book:
(6) Chapter 15, §2.3
(7) Chapter 15, $\S 3.1$
(8) Chapter 15, $\S 3.3$
(9) Chapter 15, §3.6
(10) Chapter 15, §3.10

