MODERN ALGEBRA 2: HOMEWORK 6

In the last problem set, you showed the irreducibility of several specific polynomials. In this problem set, you will prove two general irreducibility criteria.

- (1) Let $f(x) = a_n x^n + \cdots + a_0$ be a nonconstant polynomial in $\mathbb{Z}[x]$ and $p \in \mathbb{Z}$ a prime. Suppose p does not divide a_n and f(x) is irreducible modulo p. Show that f(x) is irreducible in $\mathbb{Q}[x]$. Exhibit a counterexample to show that the conclusion may fail if p divides a_n .
- (2) (Eisenstein's criterion) Let $f(x) = a_n x^n + \cdots + a_0$ be a polynomial in $\mathbb{Z}[x]$ and $p \in \mathbb{Z}$ a prime. Suppose *p* does not divide a_n , *p* divides a_i for all i < n, and p^2 does not divide a_0 . Show that f(x) is irreducible $\mathbb{Q}[x]$.
- (3) As an application, show that $1 + x + \cdots + x^{p-1}$ is irreducible in **Q**[*x*] (*Hint:* Replace *x* by *x* + 1).

Let us exhibit a polynomial that is reducible modulo every prime p but irreducible in $\mathbf{Q}[x]$.

- (4) Let $a, b \in \mathbf{F}_p$ be nonzero. Show that ab is a square in \mathbf{F}_p if and only if either both a and b are squares or both a and b are non-squares.
- (5) Consider

$$f(x) = (x - \sqrt{2} - \sqrt{3})(x + \sqrt{2} + \sqrt{3})(x + \sqrt{2} - \sqrt{3})(x - \sqrt{2} + \sqrt{3})$$

= $(x^2 - 1)^2 - 8x^2$
= $(x^2 + 1)^2 - 12x^2$
= $(x^2 - 5)^2 - 24$.

We know that f(x) is irreducible in $\mathbf{Q}[x]$. Use the previous problem to show that f(x) is reducible modulo every prime p.

Some problems from the book:

- (6) Chapter 15, §2.3
- (7) Chapter 15, §3.1
- (8) Chapter 15, §3.3
- (9) Chapter 15, §3.6
- (10) Chapter 15, §3.10