MODERN ALGEBRA 2: HOMEWORK 5

Hint (General suggestion). Remember that if $f(x) \in \mathbf{Z}[x]$ is irreducible in $\mathbf{Z}[x]$ then it is also irreducible in $\mathbf{Q}[x]$. In turn, to show f(x) is irreducible in $\mathbf{Z}[x]$ you can use the information gained from reducing modulo p.

(1) Chapter 12, §4.1

Hint: Here is a very slick way of doing this problem. Let us take part (b), for example. Show that *any* irreducible polynomial p(x) in $\mathbf{F}_2[x]$ of degree 1, 2, or 4 must divide $x^{16} - x$ by showing that $x^{16} = x$ in $\mathbf{F}_2[x]/(p(x))$. To show $x^{16} = x$, it is helpful to consider the group $\mathbf{F}_2[x]/(p(x)) \setminus \{0\}$ under multiplication.

- (2) Chapter 12, §4.3
- (3) Chapter 12, §4.5
- (4) Chapter 12, §4.12 (Skip)
- (5) Chapter 12, §4.16
- (6) Chapter 15, §1.2
- (7) Chapter 15, §2.1
- (8) Show that there exist real numbers that are transcendental over \mathbf{Q} by showing that the set of real numbers algebraic over \mathbf{Q} is countable.

Remember that a set *S* is *countable* if there is a bijection between **Z** and *S*. Let us say that a set is *at most countable* if it is finite or countable. You may freely use the following facts about countable sets:

- (a) **Q** is countable.
- (b) Subsets of countable sets are at most countable.
- (c) Images of countable sets are at most countable.
- (d) An (at most) countable union of at most countable sets is at most countable.
- (e) **R** is not countable.