MODERN ALGEBRA 2: HOMEWORK 3

(1) Let F be a field. We say that two polynomials $p(x), q(x) \in F[x]$ are relatively prime if

$$
(p(x), q(x))=(1)
$$

Prove the 'Chinese remainder theorem' for $F[x]$: If $p(x)$ and $q(x)$ are relatively prime, then

$$
F[x] /(p(x) q(x)) \cong F[x] /(p(x)) \times F[x] /(q(x))
$$

(2) Let $p(x) \in \mathbf{C}[x]$ be a polynomial of degree n. Express $\mathbf{C}[x] /(p(x))$ as a product of simpler rings. (It will depend on how $p(x)$ factors.)
(3) Chapter 11, § 7.1
(4) Chapter 11, $\S 7.2$
(5) Chapter 11, §7.3
(6) Show that none of the principal ideals of $\mathbf{C}[x, y]$ are maximal.
(7) Chapter 11, § 8.1
(8) Chapter 11, § 8.3
(9) Let R be the ring of functions that are polynomials in $\cos t$ and $\sin t$ with real coefficients. Show that R is isomorphic to $\mathbf{R}[x, y] /\left(x^{2}+y^{2}-1\right)$.

