MODERN ALGEBRA 2: HOMEWORK 2

(1) Let F be a field. Show that a polynomial $p(x) \in F[x]$ of degree n has at most n roots in F.
(2) Let R be a ring. The whole ring R is an ideal of itself, called the unit ideal. Show that if an ideal I contains a unit, then it is the unit ideal.
(3) Let R be a ring and let $a, b \in R$. Show that $(a)=(b)$ if and only if $a=u b$ for some unit $u \in R$.
Remark. As stated, this statement is wrong. It is true if R is an integral domain. For a counterexample, consider $R=\mathbf{C}[x, y, z] /((1-x y) z)$. Then we have $(z)=(y z)$. Indeed, it is clear that $(y z) \subset(z)$, and $z=x y z$ implies that $(z) \subset(y z)$. However, it is not true that there is a unit u such that $y z=u z$.
(4) Every non-zero ring has at least two ideals, the zero ideal and the unit ideal. Show that a non-zero ring is a field if and only if it has no other ideals.
(5) Show that the characteristic of a field is a prime number.
(6) §11.3: 3.12 (Sum of two ideals)
(7) §11.4: 4.3 (Identify some quotient rings)
(8) §11.4: 4.4 (Are $\mathbf{Z}[x] /\left(x^{2}+7\right)$ and $\mathbf{Z}[x] /\left(2 x^{2}+7\right)$ isomorphic?)
(9) §11.5: 5.2 (Adjoining a pre-existing element)

