MODERN ALGEBRA 2: HOMEWORK 10

- (1) Find the Galois groups (over **Q**) of the following two cubics: $x^3 3x^2 + 1$, and $x^3 + x^2 2x + 1$.
- (2) Let $\mathbf{Q} \subset K$ be the splitting field of $x^3 3x + 1$. Show that $\operatorname{Gal}(K/\mathbf{Q}) = \mathbf{Z}/3\mathbf{Z}$ but *K* cannot be obtained by adjoining a cube-root to \mathbf{Q} . (That is, $K \neq \mathbf{Q}(a)$ for any $a \in K$ with $a^3 \in \mathbf{Q}$.)
- (3) Let $p(x) = x^3 2x + 2$. Use symmetric functions to find the monic polynomial whose roots are the squares of the roots of p(x).
- (4) Let $p(x) \in \mathbf{Q}[x]$ be an irreducible monic quartic polynomial with (possibly complex) roots $\alpha_1, \ldots, \alpha_4$. Set

 $\beta_1 = \alpha_1 \alpha_2 + \alpha_3 \alpha_4, \quad \beta_2 = \alpha_1 \alpha_3 + \alpha_2 \alpha_4, \quad \beta_3 = \alpha_1 \alpha_4 + \alpha_2 \alpha_3.$

Show that $r(x) = (x - \beta_1)(x - \beta_2)(x - \beta_3)$ has coefficients in **Q**. The polynomial r(x) is called the *resolvent cubic* of p(x).

- (5) Let $p(x) \in \mathbf{Q}[x]$ be an irreducible monic quartic polynomial whose resolvent cubic $r(x) \in \mathbf{Q}[x]$ is irreducible. Show that the Galois group of p(x) is either A_4 or S_4 . You can use that the only transitive subgroups of S_4 are D_2 , C_4 , D_4 , A_4 , and S_4 . Use this criterion and the discriminant to exhibit quartic polynomials with Galois groups A_4 and S_4 .
- (6) Show that all the possibilities listed above, namely D₂, C₄, D₄, A₄, and S₄, can arise as Galois groups of quartic polynomials. Feel free to refer to any previous problems or statements from class to support your claims.

Determining whether a given finite group arises as the Galois group of a polynomial in $\mathbf{Q}[x]$ is a hard unsolved problem called the *inverse Galois problem*.

Remark. Some of the problems above may require you to express a symmetric polynomial in terms of the elementary symmetric polynomials. Although I encourage you to do a few such examples by hand, this could get quite tedious. The following functions from Mathematica (which also work on WolframAlpha) can help:

- SymmetricReduction [f, {x₁,..., x_n}]: Expresses the given symmetric function *f* of x₁,..., x_n in terms of the elementary symmetric functions.
- SymmetricReduction [f, {x₁,..., x_n}, {s₁,..., s_n}]: First expresses the given symmetric function *f* of x₁,..., x_n in terms of the elementary symmetric functions and then evaluates the resulting expression at the given values of s₁,..., s_n.