MODERN ALGEBRA 2: HOMEWORK 10

(1) Find the Galois groups (over \mathbf{Q}) of the following two cubics: $x^{3}-3 x^{2}+1$, and $x^{3}+x^{2}-2 x+1$.
(2) Let $\mathbf{Q} \subset K$ be the splitting field of $x^{3}-3 x+1$. Show that $\operatorname{Gal}(K / \mathbf{Q})=\mathbf{Z} / 3 \mathbf{Z}$ but K cannot be obtained by adjoining a cube-root to \mathbf{Q}. (That is, $K \neq \mathbf{Q}(a)$ for any $a \in K$ with $a^{3} \in \mathbf{Q}$.)
(3) Let $p(x)=x^{3}-2 x+2$. Use symmetric functions to find the monic polynomial whose roots are the squares of the roots of $p(x)$.
(4) Let $p(x) \in \mathbf{Q}[x]$ be an irreducible monic quartic polynomial with (possibly complex) roots $\alpha_{1}, \ldots, \alpha_{4}$. Set

$$
\beta_{1}=\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}, \quad \beta_{2}=\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4}, \quad \beta_{3}=\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3} .
$$

Show that $r(x)=\left(x-\beta_{1}\right)\left(x-\beta_{2}\right)\left(x-\beta_{3}\right)$ has coefficients in \mathbf{Q}. The polynomial $r(x)$ is called the resolvent cubic of $p(x)$.
(5) Let $p(x) \in \mathbf{Q}[x]$ be an irreducible monic quartic polynomial whose resolvent cubic $r(x) \in \mathbf{Q}[x]$ is irreducible. Show that the Galois group of $p(x)$ is either A_{4} or S_{4}. You can use that the only transitive subgroups of S_{4} are $D_{2}, C_{4}, D_{4}, A_{4}$, and S_{4}. Use this criterion and the discriminant to exhibit quartic polynomials with Galois groups A_{4} and S_{4}.
(6) Show that all the possibilities listed above, namely $D_{2}, C_{4}, D_{4}, A_{4}$, and S_{4}, can arise as Galois groups of quartic polynomials. Feel free to refer to any previous problems or statements from class to support your claims.

Determining whether a given finite group arises as the Galois group of a polynomial in $\mathbf{Q}[x]$ is a hard unsolved problem called the inverse Galois problem.
Remark. Some of the problems above may require you to express a symmetric polynomial in terms of the elementary symmetric polynomials. Although I encourage you to do a few such examples by hand, this could get quite tedious. The following functions from Mathematica (which also work on WolframAlpha) can help:

- SymmetricReduction [f,$\left.\left\{x_{1}, \ldots, x_{n}\right\}\right]$: Expresses the given symmetric function f of x_{1}, \ldots, x_{n} in terms of the elementary symmetric functions.
- SymmetricReduction $\left[\mathrm{f},\left\{x_{1}, \ldots, x_{n}\right\},\left\{s_{1}, \ldots, s_{n}\right\}\right]$: First expresses the given symmetric function f of x_{1}, \ldots, x_{n} in terms of the elementary symmetric functions and then evaluates the resulting expression at the given values of s_{1}, \ldots, s_{n}.

