MODERN ALGEBRA 2: PRACTICE PROBLEMS FOR THE FINAL

Use the following practice problems to test your understanding of the last third of the course, namely field extensions and Galois theory.

- (1) Let $\mathbf{F}_p \subset K$ be an extension of degree *n*. Show that all irreducible polynomials of degree *n* in $\mathbf{F}_p[x]$ have a root in *K*. In fact, show that all irreducible polynomials of degree *n* have *n* distinct roots in *K*. If α is one root, how will you obtain all the other roots?
- (2) For the following polynomials, describe the splitting field, the Galois group, and the action of the Galois group on the roots.
 - (a) $x^3 2$ over **Q**.
 - (b) $x^3 2$ over $\mathbf{Q}(\omega)$.
 - (c) $x^4 + 1$ over **Q**.
 - (d) $x^4 + 1$ over **F**₃.
- (3) Describe the splitting field of $(x^2 2x 1)(x^2 2x 7)$ over **Q**. How many subfields does it have? How many of those are Galois over **Q**?
- (4) Determine the splitting field of $x^3 + x + 1$ over **Q**. Does this field have a subfield which has degree 2 over **Q**? If it does, identify it. Otherwise, explain why not.
- (5) Find the splitting field and the Galois group of $x^4 8x^2 + 11$. Use the action of the Galois group on the roots to show that $x^4 8x^2 + 11$ is irreducible over **Q**.
- (6) Let $F = \mathbf{Q}(\omega)$. Determine the Galois group over *F* of the splitting field of (a) $\sqrt[3]{2 + \sqrt{2}}$ (b) $\sqrt{2 + \sqrt[3]{2}}$.
- (7) Let p(x) be a real polynomial whose discriminant is positive. Show that p(x) must have an even number of pairs of non-real complex roots.
- (8) Let $F \subset K$ be a Galois extension and $\alpha \in K$. Let $\{\alpha_1, \ldots, \alpha_m\}$ be the orbit of α under the Galois group. Show that $(x \alpha_1) \ldots (x \alpha_m)$ is an irreducible polynomial in F[x].
- (9) Let $\zeta = e^{2\pi i/7}$. Find a generator of the Galois group of $\mathbf{Q}(\zeta)/\mathbf{Q}$. Use it to determine the degrees of the following elements over \mathbf{Q} : (a) $\zeta + \zeta^5$ (b) $\zeta^3 + \zeta^5 + \zeta^6$.
- (10) Let p(x) be an irreducible quartic polynomial over **Q** whose resolvent cubic has all three rational roots. Show that the Galois group of p(x) is the Klein four group.
- (11) Let $p(x) \in \mathbf{Q}[x]$ be a polynomial whose Galois group is a Dihedral group. Show that the roots of p(x) can be expressed using radicals and roots of unity.