
MODERN ALGEBRA 2: PRACTICE PROBLEMS FOR THE FINAL

Problem. Let F = Q(ω). Determine the Galois group over F of the splitting field of (a)
3
√

2 +
√

2 (b)
√

2 + 3
√

2.

Let α =
3
√

2 +
√

2 and β =
3
√

2−
√

2. Consider K = F(α, β). Then K is a splitting
field of the polynomial p(x) = (x3 − α3)(x3 − β3), which has coefficients in F. We do
not yet know that p(x) is irreducible. In any case, the irreducible polynomial of α must
divide p(x), and hence K contains the splitting field of the irreducible polynomial of α.
Our goal is to determine Gal(K/F), and use it to find the irreducible polynomial of α, and
its splitting field.

We have the following diagram of subfields

K

F(α) F(β)

F(
√

2)

F .

The extension F(
√

2)/F has degree 2. The extension F(α)/F(
√

2) has degree 3. This is
equivalent to showing that 2 +

√
2 is not a cube in F(

√
2). If it were, then 2−

√
2 would

also be a cube (of the conjugate), and their product 2 would also be a cube. But 2 is clearly
not a cube in F(

√
2) (see the next lemma).

Note that the group Gal(F(
√

2)/F) is cyclic of order 2 generated by
√

2 7→ −
√

2, and
the group Gal(F(α)/F(

√
2)) is cyclic of order 3 generated by α 7→ ωα. Since Gal(K/F)

surjects onto Gal(F(
√

2)/F), there must be an automorphism of K that sends
√

2 to
√
−2.

Since Gal(K/F(
√

2)) surjects onto Gal(F(α)/F(
√

2)), there must be an automorphism of
K that sends α to ωα. Likewise, there must be an automorphism of K that sends β to ωβ.

Let us now consider the action of Gal(K/F) on the six roots {α, ωα, ω2α, β, ωβ, ω2β} of
our polynomial p(x). Let us divide the sixtuple into two triples A = {α, ωα, ω2β} and
B = {β, ωβ, ω2β}. Since Gal(K/F) includes an automorphism that takes α to ωα, the
three elements of A lie in one orbit. Similarly, the three elements of B lie in one orbit.
Note that the elements of A cube to 2 +

√
2 and the elements of B cube to 2−

√
2. Since

Gal(K/F) includes an automorphism that takes
√

2 to−
√

2, such an automorphism must
take elements of A to elements of B. We deduce that the entire sixtuple is one orbit of
Gal(K/F). As a consequence, p(x) is irreducible over F and K is indeed its splitting field.

As far as G = Gal(K/F) is concerned, we know the following. We have a surjection

G → Gal(F(
√

2)/F) ∼= Z/2Z,
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whose kernel N = Gal(K/ F(
√

2)) surjects onto Gal(F(α)/F(
√

2)) ∼= Z/3Z and onto
Gal(F(β)/F(

√
2)) ∼= Z/2Z. By combining the two, we get a homomorphism

φ : N → Gal(F(α)/F(
√

2))×Gal(F(β)/F(
√

2)) ∼= Z/3Z× Z/3Z.

See that φ must be injective—an automorphism in ker φ fixes α and β, and hence all of
K. Either φ is an isomorphism (in which case N ∼= Z/3Z× Z/3Z, deg(K/F(

√
2)) = 9,

and F(α) 6= F(β)) or an injection (in which case N ∼= Z/3Z, deg(K/F(
√

2)) = 3, and
F(α) = F(β).) We claim that the first is true by contradiction. Suppose the second, and
let the image of N in Z/3Z× Z/3Z be generated by (i, j). Note that (i, j) corresponds to
a pair of automorphisms (σ, τ) where σ : α → ωiα and τ : β → ω jβ. Since the projection
from N to both factors is surjective, neither i nor j is zero. Therefore, either i = j or i = −j.
Set

γ =

{
αβ if i = −j
α/β if i = j.

Then γ is fixed by all of N, and therefore must be an element of F(
√

2). We can check
explicitly that neither αβ nor α/β lies in F(

√
2) (see the next lemma).

In summary, we have a surjection Gal(K/F) → Z/2Z with kernel Z/3Z× Z/3Z. This
makes Gal(K/F) a semidirect product

Gal(K/F) ∼= (Z/3Z× Z/3Z)o Z/2Z.

Although this is not a complete description, we will stop at this stage.

Lemma 1. Let α =
3
√

2 +
√

2 and β =
3
√

2−
√

2. Then neither αβ nor α/β is in Q(ω,
√

2).

Proof. We must prove that (αβ)3 and (α/β)3 are not cubes in Q(ω,
√

2). It suffices to
show that they are not cubes in Q(

√
2). Since Q(ω,

√
2)/Q(

√
2) is a quadratic extension,

an element that is not a cube in Q(
√

2) cannot be a cube in Q(ω,
√

2).
We have (αβ)3 = 2. Since 2 is not a cube in Q, it cannot be a cube in a quadratic

extension of Q; in particular, not in Q(
√

2).
We have (α/β)3 = 3+ 2

√
2 and we want to show that x3− (3+ 2

√
2) is irreducible over

Q(
√

2). Note that this would follow if we showed that (x3− (3 + 2
√

2))(x3− (3− 2
√

2))
is irreducible over Q. One can do that, but here is a slicker argument (but still using only
the things we have learned!). We want to show that the polynomial x3 − (3 + 2

√
2) is

irreducible over Q(
√

2). Since Q(
√

2) is the fraction field of the UFD Z[
√

2], it suffices
to show that x3 − (3 + 2

√
2) is irreducible over Z[

√
2]. For this, it suffices to show that

x3 − (3 + 2
√

2) is irreducible modulo a prime of Z[
√

2]. Consider π = 3−
√

2. Then

Z[
√

2]/(π) = Z[t]/(t2 − 2, 3− t) = Z/7Z,

so π is prime. We have

x3 − (3 + 2
√

2) ≡ x3 − 9 ≡ x3 − 2 (mod π),

and x3 − 2 is irreducible over Z/7Z since 2 is not a cube modulo 7. �
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A similar strategy works for α =
√

2 + 3
√

2. I will not spell out all the details, but we
get a sixtuple of roots α,−α, β,−β, γ,−γ, where α =

√
2 + 3
√

2, β =
√

2 + ω 3
√

2, and
γ =

√
2 + ω2 3

√
2. The diagram becomes

K

F(β)F(α) F(γ)

F( 3
√

2)

F .
The group G = Gal(K/F) surjects onto Gal(F( 3

√
2)/F) ∼= Z/3Z, and the kernel injects

into Gal(F(α)/F( 3
√

2)) × Gal(F(β)/F( 3
√

2)) × Gal(F(γ)/F( 3
√

2)) ∼= (Z/2Z)3. We must
then determine the image of this injection. As before, it turns out to be everything (but
it’s harder to show). In the end, we get

Gal(K/F) ∼= (Z/2Z)3 o Z/3Z.
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