MODERN ALGEBRA 2: PRACTICE PROBLEMS FOR THE FINAL

Problem. Let $F=\mathbf{Q}(\omega)$. Determine the Galois group over F of the splitting field of (a) $\sqrt[3]{2+\sqrt{2}}$ (b) $\sqrt{2+\sqrt[3]{2}}$.

Let $\alpha=\sqrt[3]{2+\sqrt{2}}$ and $\beta=\sqrt[3]{2-\sqrt{2}}$. Consider $K=F(\alpha, \beta)$. Then K is a splitting field of the polynomial $p(x)=\left(x^{3}-\alpha^{3}\right)\left(x^{3}-\beta^{3}\right)$, which has coefficients in F. We do not yet know that $p(x)$ is irreducible. In any case, the irreducible polynomial of α must divide $p(x)$, and hence K contains the splitting field of the irreducible polynomial of α. Our goal is to determine $\operatorname{Gal}(K / F)$, and use it to find the irreducible polynomial of α, and its splitting field.

We have the following diagram of subfields

The extension $F(\sqrt{2}) / F$ has degree 2. The extension $F(\alpha) / F(\sqrt{2})$ has degree 3. This is equivalent to showing that $2+\sqrt{2}$ is not a cube in $F(\sqrt{2})$. If it were, then $2-\sqrt{2}$ would also be a cube (of the conjugate), and their product 2 would also be a cube. But 2 is clearly not a cube in $F(\sqrt{2})$ (see the next lemma).

Note that the group $\operatorname{Gal}(F(\sqrt{2}) / F)$ is cyclic of order 2 generated by $\sqrt{2} \mapsto-\sqrt{2}$, and the group $\operatorname{Gal}(F(\alpha) / F(\sqrt{2}))$ is cyclic of order 3 generated by $\alpha \mapsto \omega \alpha$. Since $\operatorname{Gal}(K / F)$ surjects onto $\operatorname{Gal}(F(\sqrt{2}) / F)$, there must be an automorphism of K that sends $\sqrt{2}$ to $\sqrt{-2}$. Since $\operatorname{Gal}(K / F(\sqrt{2}))$ surjects onto $\operatorname{Gal}(F(\alpha) / F(\sqrt{2}))$, there must be an automorphism of K that sends α to $\omega \alpha$. Likewise, there must be an automorphism of K that sends β to $\omega \beta$.

Let us now consider the action of $\operatorname{Gal}(K / F)$ on the six roots $\left\{\alpha, \omega \alpha, \omega^{2} \alpha, \beta, \omega \beta, \omega^{2} \beta\right\}$ of our polynomial $p(x)$. Let us divide the sixtuple into two triples $A=\left\{\alpha, \omega \alpha, \omega^{2} \beta\right\}$ and $B=\left\{\beta, \omega \beta, \omega^{2} \beta\right\}$. Since $\operatorname{Gal}(K / F)$ includes an automorphism that takes α to $\omega \alpha$, the three elements of A lie in one orbit. Similarly, the three elements of B lie in one orbit. Note that the elements of A cube to $2+\sqrt{2}$ and the elements of B cube to $2-\sqrt{2}$. Since $\operatorname{Gal}(K / F)$ includes an automorphism that takes $\sqrt{2}$ to $-\sqrt{2}$, such an automorphism must take elements of A to elements of B. We deduce that the entire sixtuple is one orbit of $\operatorname{Gal}(K / F)$. As a consequence, $p(x)$ is irreducible over F and K is indeed its splitting field.

As far as $G=\operatorname{Gal}(K / F)$ is concerned, we know the following. We have a surjection

$$
G \rightarrow \underset{1}{\operatorname{Gal}(\mathbf{F}(\sqrt{2}) / F) \cong \mathbf{Z} / 2 \mathbf{Z}, \quad \text {, }}
$$

whose kernel $N=\operatorname{Gal}(K / \mathbf{F}(\sqrt{2}))$ surjects onto $\operatorname{Gal}(F(\alpha) / F(\sqrt{2})) \cong \mathbf{Z} / 3 \mathbf{Z}$ and onto $\operatorname{Gal}(F(\beta) / F(\sqrt{2})) \cong \mathbf{Z} / 2 \mathbf{Z}$. By combining the two, we get a homomorphism

$$
\phi: N \rightarrow \operatorname{Gal}(F(\alpha) / F(\sqrt{2})) \times \operatorname{Gal}(F(\beta) / F(\sqrt{2})) \cong \mathbf{Z} / 3 \mathbf{Z} \times \mathbf{Z} / 3 \mathbf{Z}
$$

See that ϕ must be injective-an automorphism in $\operatorname{ker} \phi$ fixes α and β, and hence all of K. Either ϕ is an isomorphism (in which case $N \cong \mathbf{Z} / 3 \mathbf{Z} \times \mathbf{Z} / 3 \mathbf{Z}, \operatorname{deg}(K / F(\sqrt{2}))=9$, and $F(\alpha) \neq F(\beta)$) or an injection (in which case $N \cong \mathbf{Z} / 3 \mathbf{Z}, \operatorname{deg}(K / F(\sqrt{2}))=3$, and $F(\alpha)=F(\beta)$.) We claim that the first is true by contradiction. Suppose the second, and let the image of N in $\mathbf{Z} / 3 \mathbf{Z} \times \mathbf{Z} / 3 \mathbf{Z}$ be generated by (i, j). Note that (i, j) corresponds to a pair of automorphisms (σ, τ) where $\sigma: \alpha \rightarrow \omega^{i} \alpha$ and $\tau: \beta \rightarrow \omega^{j} \beta$. Since the projection from N to both factors is surjective, neither i nor j is zero. Therefore, either $i=j$ or $i=-j$. Set

$$
\gamma= \begin{cases}\alpha \beta & \text { if } i=-j \\ \alpha / \beta & \text { if } i=j\end{cases}
$$

Then γ is fixed by all of N, and therefore must be an element of $F(\sqrt{2})$. We can check explicitly that neither $\alpha \beta$ nor α / β lies in $F(\sqrt{2})$ (see the next lemma).

In summary, we have a surjection $\operatorname{Gal}(K / F) \rightarrow \mathbf{Z} / 2 \mathbf{Z}$ with kernel $\mathbf{Z} / 3 \mathbf{Z} \times \mathbf{Z} / 3 \mathbf{Z}$. This makes $\operatorname{Gal}(K / F)$ a semidirect product

$$
\operatorname{Gal}(K / F) \cong(\mathbf{Z} / 3 \mathbf{Z} \times \mathbf{Z} / 3 \mathbf{Z}) \rtimes \mathbf{Z} / 2 \mathbf{Z}
$$

Although this is not a complete description, we will stop at this stage.
Lemma 1. Let $\alpha=\sqrt[3]{2+\sqrt{2}}$ and $\beta=\sqrt[3]{2-\sqrt{2}}$. Then neither $\alpha \beta$ nor α / β is in $\mathbf{Q}(\omega, \sqrt{2})$.
Proof. We must prove that $(\alpha \beta)^{3}$ and $(\alpha / \beta)^{3}$ are not cubes in $\mathbf{Q}(\omega, \sqrt{2})$. It suffices to show that they are not cubes in $\mathbf{Q}(\sqrt{2})$. Since $\mathbf{Q}(\omega, \sqrt{2}) / \mathbf{Q}(\sqrt{2})$ is a quadratic extension, an element that is not a cube in $\mathbf{Q}(\sqrt{2})$ cannot be a cube in $\mathbf{Q}(\omega, \sqrt{2})$.

We have $(\alpha \beta)^{3}=2$. Since 2 is not a cube in \mathbf{Q}, it cannot be a cube in a quadratic extension of \mathbf{Q}; in particular, not in $\mathbf{Q}(\sqrt{2})$.

We have $(\alpha / \beta)^{3}=3+2 \sqrt{2}$ and we want to show that $x^{3}-(3+2 \sqrt{2})$ is irreducible over $\mathbf{Q}(\sqrt{2})$. Note that this would follow if we showed that $\left(x^{3}-(3+2 \sqrt{2})\right)\left(x^{3}-(3-2 \sqrt{2})\right)$ is irreducible over \mathbf{Q}. One can do that, but here is a slicker argument (but still using only the things we have learned!). We want to show that the polynomial $x^{3}-(3+2 \sqrt{2})$ is irreducible over $\mathbf{Q}(\sqrt{2})$. Since $\mathbf{Q}(\sqrt{2})$ is the fraction field of the UFD $\mathbf{Z}[\sqrt{2}]$, it suffices to show that $x^{3}-(3+2 \sqrt{2})$ is irreducible over $\mathbf{Z}[\sqrt{2}]$. For this, it suffices to show that $x^{3}-(3+2 \sqrt{2})$ is irreducible modulo a prime of $\mathbf{Z}[\sqrt{2}]$. Consider $\pi=3-\sqrt{2}$. Then

$$
\mathbf{Z}[\sqrt{2}] /(\pi)=\mathbf{Z}[t] /\left(t^{2}-2,3-t\right)=\mathbf{Z} / 7 \mathbf{Z}
$$

so π is prime. We have

$$
x^{3}-(3+2 \sqrt{2}) \equiv x^{3}-9 \equiv x^{3}-2 \quad(\bmod \pi)
$$

and $x^{3}-2$ is irreducible over $\mathbf{Z} / 7 \mathbf{Z}$ since 2 is not a cube modulo 7 .

A similar strategy works for $\alpha=\sqrt{2+\sqrt[3]{2}}$. I will not spell out all the details, but we get a sixtuple of roots $\alpha,-\alpha, \beta,-\beta, \gamma,-\gamma$, where $\alpha=\sqrt{2+\sqrt[3]{2}}, \beta=\sqrt{2+\omega \sqrt[3]{2}}$, and $\gamma=\sqrt{2+\omega^{2} \sqrt[3]{2}}$. The diagram becomes

The group $G=\operatorname{Gal}(K / F)$ surjects onto $\operatorname{Gal}(F(\sqrt[3]{2}) / F) \cong \mathbf{Z} / 3 \mathbf{Z}$, and the kernel injects into $\operatorname{Gal}(F(\alpha) / F(\sqrt[3]{2})) \times \operatorname{Gal}(F(\beta) / F(\sqrt[3]{2})) \times \operatorname{Gal}(F(\gamma) / F(\sqrt[3]{2})) \cong(\mathbf{Z} / 2 \mathbf{Z})^{3}$. We must then determine the image of this injection. As before, it turns out to be everything (but it's harder to show). In the end, we get

$$
\operatorname{Gal}(K / F) \cong(\mathbf{Z} / 2 \mathbf{Z})^{3} \rtimes \mathbf{Z} / 3 \mathbf{Z}
$$

