
SEMIDIRECT PRODUCTS

Let G be a group and N / G a normal subgroup. We would like to understand the
relation between G on one hand and the the two groups N and G/N on the other. A
complete understanding still eludes us, so we will work under an additional assumption.
We first need a definition.

Definition 1. Two subgroups N and H of G are called complementary if
(1) N ∩ H = {1}, and
(2) NH = G, where NH = {nh | n ∈ N, h ∈ H}.

Proposition 2. Suppose N and H are two complementary subgroups of G. Then every g ∈ G
can be written uniquely as g = nh where n ∈ N and h ∈ H.

Proof. It follows from the definition that every g can be written this way. For the unique-
ness, suppose n1h1 = n2h2. Then n−1

2 n1 = h2h−1
1 . But n−1

2 n1 ∈ N, h2h−1
1 ∈ H, and

N ∩ H = {1}. So n1 = n2 and h1 = h2. �

The additional assumption we need is that the normal subgroup N / G admits a com-
plementary subgroup H ⊂ G. Note that H need not be a normal subgroup.

Example 3. There are many examples where complementary subgroups exist.
(1) Let G = Sn and N = An. Then H = {id, τ} is a complementary subgroup, where

τ is any transposition.
(2) Let G = Dn and let N be the subgroup of rotations in Dn. Then H = {id, r} is a

complementary subgroup, where r is any reflection in G.
(3) Let G = M be the group of all isometries of the plane and let N be the subgroup of

translations. Then H ∼= O2 consisting of isometries fixing the origin is a comple-
mentary subgroup.

(4) Let G = G1 × G2 and N = G1 × {1}. Then H = {1} × G2 is a complementary
subgroup.

(5) Let G = O2 and N = SO2. Then H =

{(
1 0
0 1

)
,
(

1 0
0 −1

)}
is a complementary

subgroup.
(6) Let G = O3 and N = SO3. Then H = {I3,−I3} is a complementary subgroup.

Example 4. There are also examples where a complementary subgroup does not exist.
(1) Let G = Z4 and N = {[0], [2]}. Then N does not have a complementary subgroup.
(2) Let G = Q be the quaternion group and N = {±1}. Then N does not have a

complementary subgroup.

Proposition 5. Let N / G. Then a subgroup H ⊂ G is complementary to N if and only if the
quotient map G → G/N restricted to H gives an isomorphism H → G/N.

Thus, we can think of the complementary subgroup H as a copy of G/N in G.
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Proof. Since the kernel of G → G/N is N, the kernel of H → G/N is N ∩ H. Hence
H → G/N is injective if and only if N ∩ H = {1}.

Next, the right coset Ng is the image of h under the quotient map if and only if Nh =
Ng. In turn, Nh = Ng if and only if there is an n ∈ N such that g = nh. Since elements of
G/N are exactly the right cosets Ng, we conclude that H → G/N is surjective if and only
if every g ∈ G can be expressed as g = nh for some n ∈ N and h ∈ H.

Combining the two, we get that N ∩ H = {1} and HN = G if and only if H → G/N is
injective and surjective, that is, an isomorphism. �

Example 6. Suppose N ∼= Z3 and H ∼= Z2. We find that there is more than one G that has
N as its normal subgroup and H as its complementary subgroup:

(1) G = Z6, with N = {[0], [2], [4]} and H = {[0], [3]}.
(2) G = S3, with N = A3 and H = {id, (12)}.

Example 6 shows that we need more information to identify G than just the information
of N and H. What is this extra piece of information? I claim that this extra piece is a
homomorphism

φ : H → Aut N.
Where does this φ come from? Suppose we have a G with N / G and complementary H.
Let h ∈ H and n ∈ N. Since N is normal, we have hnh−1 ∈ N. Thus, the rule n 7→ hnh−1

defines a function φh : N → N. Observe that the function φh is an automorphism of the
group N. Furthermore, we have φh1h2 = φh1 ◦ φh2 . Indeed, for n ∈ N, we have

φh1h2(n) = h1h2n(h1h2)
−1 = h1(h2nh−1

2 )h−1
1 = φh1 ◦ φh2(n).

Thus the rule h 7→ φh defines a homomorphism (which we denote by φ) from H to Aut N,
the group of automorphisms of N.

Given N, H, and φ : H → Aut N, we can recover the group structure of G. To do so,
we must describe how to multiply and take inverses in G. By Proposition 2 we can write
elements of G uniquely as nh, for n ∈ N and h ∈ H. Then we have

n1h1 · n2h2 = n1h1n2h−1
1 · h1h2 = n1φh1(n2) · h1h2.

We have thus recovered the multiplication rule for G from the multiplication rules in N,
H, and the function φ. We can also recover the inverse

(nh)−1 = h−1n−1 = h−1n−1h · h−1 = φ−1
h (n−1) · h−1.

So far, we saw that a group G with N / G and complementary H gives a homomorphism
φ : H → Aut N and this homomorphism, along with N and H, allows us to recover G.
Suppose we now start with a group N, a group H, and a homomorphism φ : H → Aut N,
can we construct a G which has N / G and a complementary H where conjugation on N
by elements of H corresponds exatly to φ? The answer is yes! We build G as follows. Let
the elements of G be (n, h), where n ∈ N and h ∈ H. Let the multiplication rule be

(1) (n1, h1) · (n2, h2) = (n1φh1(n2), h1h2).

Proposition 7. The above rule is associative, there is an identity, and every element has an inverse.
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Proof. The proof is straightforward. You should not read it, but do it yourself. Let us
check associativity:

((n1, h1) · (n2, h2)) · (n3, h3) = ((n1φh1(n2), h1h2))(n3, h3)

= (n1φh1(n2)φh1h2(n3), h1h2h3)

= (n1φh1(n2)φh1 ◦ φh2(n3), h1h2h3)

= (n1φh1(n2φh2(n3)), h1h2h3)

= (n1, h1) · (n2φh2(n3), h2h3)

= (n1, h1) · ((n2, h2) · (n3, h3)).

The identity is (1, 1), because

(n, h) · (1, 1) = (nφh(1), h) = (n, h)
(1, 1) · (n, h) = (φ1(n), h) = (n, h).

The inverse of (n, h) is (φ−1
h (n−1), h−1) because

(n, h) · (φ−1
h (n−1), h−1) = (nφh ◦ φ−1

h (n−1), hh−1) = (1, 1)

(φ−1
h (n−1), h−1) · (n, h) = (φ−1

h (n−1)φh−1(n), h−1h) = (1, 1).

�

Definition 8. The group defined by the multiplication rule in Equation 1 is called the
semidirect product of N and H via φ, and denoted by N oφ H.

Remark 9. Suppose the homomorphism φ : H → Aut N is trivial. Then N oφ H is isomor-
phic to the direct product N× H. Indeed, in this case the multiplication rule (Equation 1)
becomes

(n1, h1) · (n2, h2) = (n1n2, h1h2).

Note that the map N oφ H → H defined by (n, h) 7→ h is a homomorphism. Its kernel
is {(n, 1) | n ∈ N}, which is isomorphic to N. The set {(1, h) | h ∈ H} forms a comple-
mentary subgroup. Thus, N oφ H has a copy of N as a normal subgroup and a copy of
H as a complementary subgroup. Finally, we check that in N oφ H, the homomorphism
φ : H → Aut N comes from conjugation:

(1, h) · (n, 1) · (1, h)−1 = (1, h) · (n, 1) · (1, h−1) = (φh(n), h) · (1, h−1) = (φh(n), 1).

We can summarize the whole discussion in the following theorem.

Theorem 10. Let G be a group with a normal subgroup N and a complementary subgroup H.
Conjugation by elements of H gives a homomorphism φ : H → Aut N and we have an isomor-
phism N oφ H ∼= G defined by (n, h) 7→ nh.

Conversely, given N, H, and a homomorphism φ : H → Aut N, we can construct a group
G with N as a normal subgroup and H as a complementary subgroup such that φ is given by
conjugation by elements of H.

Example 11. Let us identify the φ in some of the examples from Example 3 and thus
exhibit them as semidirect products.
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(1) Let G = Dn, N ∼= Cn, the subgroup of rotations, and H = {id, r} ∼= C2 be the
complementary subgroup generated by a reflection r. Observe that φid = id and
φr(x) = rxr−1 = x−1. Thus φ : C2 → Aut Cn is the homomorphism that sends the
generator of C2 to the automorphism x 7→ x−1 of Cn. Thus we have

Dn ∼= Cn oφ C2.

(2) Let G = M, the group of isometries of the plane, N = T ∼= R2, the subgroup
of translations and H ∼= O2 be the complementary subgroup of isometries fixing
the origin. Then φA(tv) = Atv A−1 = tAv. Thus, φ : O2 → Aut R2 is simply the
homomorphism that sends the matrix A to the automorphism of R2 defined by
left multiplication by A. Thus we have

M ∼= Rn oφ O2.

(3) Let G = O3, N = SO3, and H = {I,−I} ∼= Z2. Note that conjugation by either I or
−I is the identity operation, and thus the homomorphism φ : H → Aut N in this
case is trivial. We thus get

O3
∼= SO3 × Z2.

Example 12. Let us construct a group as a semidirect product. Let N = Z, H = Z2 and
let φ : H → Aut N be the homomorphism that sends [0] to the identity automorphism of
N and [1] to the automorphism of N given by n 7→ −n. We then get a group

G = Z oφ Z2.

Note that G is not abelian. We have

(m, [0]) · (n, [1]) = (m + φ[0](n), [1]) = (m + n, [1]),

but
(n, [1]) · (m, [0]) = (n + φ[1](m), [1]) = (n−m, [1]).

In particular, G is not isomorphic to Z× Z2; it is something new!
We may wonder whether we have seen G before. Consider the group G′ of isometries

of the infinite pattern
· · ·T T T T T T T T · · · .

Let N′ be the normal subgroup of G′ consisting of translations. Then N′ ∼= Z. Let r be the
reflection in a vertical line. Then H′ = {id, r} forms a subgroup complementary to N′.
Denoting by tn the translation by n, we see that

rtnr−1 = t−n.

Hence the homomorphism H′ → Aut N′ given by conjugation corresponds exactly to the
φ we had above. We thus realize that

G′ ∼= Z oφ Z2.

REFERENCES

[1] David Dummit and Richard Foote Abstract Algebra, 3E John Wiley & Sons 2004.
[2] Walter Neumann Notes on Semidirect Products, www.math.columbia.edu/~bayer/S09/ModernAlgebra/
semidirect.pdf

4

www.math.columbia.edu/~bayer/S09/ModernAlgebra/semidirect.pdf
www.math.columbia.edu/~bayer/S09/ModernAlgebra/semidirect.pdf

	References

