SEMIDIRECT PRODUCTS

Let G be a group and N <G a normal subgroup. We would like to understand the
relation between G on one hand and the the two groups N and G/N on the other. A
complete understanding still eludes us, so we will work under an additional assumption.
We first need a definition.

Definition 1. Two subgroups N and H of G are called complementary if

(1) NN H = {1}, and
(2) NH = G, where NH = {nh | n € N,h € H}.

Proposition 2. Suppose N and H are two complementary subgroups of G. Then every § € G
can be written uniquely as § = nh wheren € N and h € H.

Proof. It follows from the definition that every g can be written this way. For the unique-
ness, suppose nih; = nyhy. Then nz’lnl = hzhl’l. But nglnl € N, hzhfl € H, and
NﬂH:{l}.Sonlznzandhlzhz. ]

The additional assumption we need is that the normal subgroup N < G admits a com-
plementary subgroup H C G. Note that H need not be a normal subgroup.

Example 3. There are many examples where complementary subgroups exist.

(1) Let G = S, and N = A,. Then H = {id, T} is a complementary subgroup, where
T is any transposition.

(2) Let G = Dy, and let N be the subgroup of rotations in D,,. Then H = {id,r} is a
complementary subgroup, where r is any reflection in G.

(3) Let G = M be the group of all isometries of the plane and let N be the subgroup of
translations. Then H = O; consisting of isometries fixing the origin is a comple-
mentary subgroup.

(4) Let G = G; X Gy and N = Gy x {1}. Then H = {1} x G; is a complementary

subgroup.
(5) Let G = Oy and N = SO,. Then H = { <é (1)) , ((1) _01> } is a complementary
subgroup.

(6) Let G = Oz and N = SO;. Then H = {I3, — I3} is a complementary subgroup.

Example 4. There are also examples where a complementary subgroup does not exist.

(1) Let G = Zgand N = {[0], [2]}. Then N does not have a complementary subgroup.
(2) Let G = Q be the quaternion group and N = {£1}. Then N does not have a
complementary subgroup.

Proposition 5. Let N <G. Then a subgroup H C G is complementary to N if and only if the
quotient map G — G/ N restricted to H gives an isomorphism H — G/ N.

Thus, we can think of the complementary subgroup H as a copy of G/N in G.
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Proof. Since the kernel of G — G/N is N, the kernel of H —+ G/N is NN H. Hence
H — G/N is injective if and only if NN H = {1}.

Next, the right coset Ng is the image of i under the quotient map if and only if Ni =
Ng. In turn, Nh = Ng if and only if there is an n € N such that ¢ = nh. Since elements of
G/ N are exactly the right cosets Ng, we conclude that H — G/ N is surjective if and only
if every ¢ € G can be expressed as ¢ = nh forsomen € Nand h € H.

Combining the two, we get that NN H = {1} and HN = Gifand only if H — G/N is
injective and surjective, that is, an isomorphism. U

Example 6. Suppose N = Z3 and H = Z;. We find that there is more than one G that has
N as its normal subgroup and H as its complementary subgroup:

(1) G = Zs, with N = {[0], 2], [4]} and H = {[0], [3]}.

(2) G = S3, with N = Az and H = {id, (12)}.

Example 6{shows that we need more information to identify G than just the information
of N and H. What is this extra piece of information? I claim that this extra piece is a
homomorphism

¢: H— AutN.

Where does this ¢ come from? Suppose we have a G with N <G and complementary H.
Leth € H and n € N. Since N is normal, we have hnh~1 € N. Thus, the rule n — hnh~1!
defines a function ¢,: N — N. Observe that the function ¢y, is an automorphism of the
group N. Furthermore, we have ¢, ,, = ¢y, © ¢y,. Indeed, for n € N, we have

Piymy (1) = hihon(hiha) ™' = hy(hanhy )byt = ¢y, 0 oy, ().

Thus the rule h — ¢, defines a homomorphism (which we denote by ¢) from H to Aut N,
the group of automorphisms of N.

Given N, H, and ¢: H — AutN, we can recover the group structure of G. To do so,
we must describe how to multiply and take inverses in G. By [Proposition 2| we can write
elements of G uniquely as nh, for n € N and h € H. Then we have

Tllhl . nzhz = Tllhll’lzhl_l . hlhz = nl(Phl (1’12) 'hlhz.

We have thus recovered the multiplication rule for G from the multiplication rules in N,
H, and the function ¢. We can also recover the inverse

(nh) 7 =h"'n = e =g () R

So far, we saw that a group G with N <G and complementary H gives a homomorphism
¢: H — AutN and this homomorphism, along with N and H, allows us to recover G.
Suppose we now start with a group N, a group H, and a homomorphism ¢: H — AutN,
can we construct a G which has N <G and a complementary H where conjugation on N
by elements of H corresponds exatly to ¢? The answer is yes! We build G as follows. Let
the elements of G be (1n,h), where n € N and h € H. Let the multiplication rule be

(1) (n1,h1) - (n2,h2) = (n1¢py,, (n2), hiha).

Proposition 7. The above rule is associative, there is an identity, and every element has an inverse.
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Proof. The proof is straightforward. You should not read it, but do it yourself. Let us
check associativity:

((n1,h1) - (n2,h2)) - (n3, hs) = ((n1¢y, (n2), hih2))(n3, h3)
= (n1¢n, (n2)Pnyn, (13), hhohs)
= (m1¢n, (n2) P, © Pn,(13), h1h2h3)
= (n1y, (n2n, (13)), hihohs)

= (m1, ) - (n2¢n, (n3), h2hs)

= ( )

((n2,h2) - (n3,h3)).
The identity is (1,1), because

(n,h) - (1,1) = (ny(1),h) = (n,h)
(L,1) - (n,h) = (¢1(n), h) = (n,h).

The inverse of (n,h) is (¢, '(n~1), ™) because

h
(n, 1) - (7 (1), h7Y) = (g o (™), W) = (1,1)
@ (), 1) - (k) = (95 (0 )yr (n), 1 h) = (1,1).
O

Definition 8. The group defined by the multiplication rule in is called the
semidirect product of N and H via ¢, and denoted by N x4 H.

Remark 9. Suppose the homomorphism ¢: H — Aut N is trivial. Then N xy H is isomor-
phic to the direct product N x H. Indeed, in this case the multiplication rule (Equation 1)
becomes

(n1,hy) - (ng, hp) = (nyng, hihy).

Note that the map N x4y H — H defined by (n,h) +— h is a homomorphism. Its kernel
is {(n,1) | n € N}, which is isomorphic to N. The set {(1,h) | h € H} forms a comple-
mentary subgroup. Thus, N x4 H has a copy of N as a normal subgroup and a copy of
H as a complementary subgroup. Finally, we check that in N x4 H, the homomorphism
¢: H — Aut N comes from conjugation:

(L) (n,1)- (L)~ = (L) - (n,1) - (LE™Y) = (¢u(n),h) - (LETY) = (¢n(n),1).

We can summarize the whole discussion in the following theorem.

Theorem 10. Let G be a group with a normal subgroup N and a complementary subgroup H.
Conjugation by elements of H gives a homomorphism ¢: H — Aut N and we have an isomor-
phism N x4 H = G defined by (n, h) — nh.

Conversely, given N, H, and a homomorphism ¢: H — Aut N, we can construct a group
G with N as a normal subgroup and H as a complementary subgroup such that ¢ is given by
conjugation by elements of H.

Example 11. Let us identify the ¢ in some of the examples from and thus

exhibit them as semidirect products.
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(1) Let G = Dy, N = C,, the subgroup of rotations, and H = {id,r} = C, be the
complementary subgroup generated by a reflection r. Observe that ¢;q = id and
¢r(x) = rxr~! = x~1. Thus ¢: C; — AutC, is the homomorphism that sends the
generator of C, to the automorphism x — x~! of C,. Thus we have

Dn = Cn N(P Cz.

(2) Let G = M, the group of isometries of the plane, N = T = R2, the subgroup
of translations and H = O, be the complementary subgroup of isometries fixing
the origin. Then ¢a(t,) = At,A~! = tu,. Thus, ¢: O — AutR? is simply the
homomorphism that sends the matrix A to the automorphism of R? defined by
left multiplication by A. Thus we have

M = R" >4¢ Oz.

(3) Let G = O3, N = SO3,and H = {I, —I} = Z,. Note that conjugation by either I or
—1I is the identity operation, and thus the homomorphism ¢: H — Aut N in this
case is trivial. We thus get

O3 = 503 X 2.

Example 12. Let us construct a group as a semidirect product. Let N = Z, H = Z, and
let ¢: H — Aut N be the homomorphism that sends [0] to the identity automorphism of
N and [1] to the automorphism of N given by n +— —n. We then get a group

G=17Z >44; Zz.
Note that G is not abelian. We have

(m, [0]) - (n, [1]) = (m + po (m), [1]) = (m +n, [1]),
but
(n, (1]) - (m, [0]) = (1 + ¢pay(m), [1]) = (n —m, [1]).
In particular, G is not isomorphic to Z x Z,; it is something new!
We may wonder whether we have seen G before. Consider the group G’ of isometries

of the infinite pattern
. TTTTTTTT---.

Let N’ be the normal subgroup of G’ consisting of translations. Then N’ = Z. Let r be the
reflection in a vertical line. Then H' = {id, r} forms a subgroup complementary to N'.
Denoting by ¢, the translation by 1, we see that

rt‘nr_1 =1t_4.

Hence the homomorphism H' — Aut N’ given by conjugation corresponds exactly to the
¢ we had above. We thus realize that

G' = Z xyZy.
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