SEMIDIRECT PRODUCTS

Let *G* be a group and $N \triangleleft G$ a normal subgroup. We would like to understand the relation between *G* on one hand and the two groups *N* and *G*/*N* on the other. A complete understanding still eludes us, so we will work under an additional assumption. We first need a definition.

Definition 1. Two subgroups *N* and *H* of *G* are called *complementary* if

- (1) $N \cap H = \{1\}$, and
- (2) NH = G, where $NH = \{nh \mid n \in N, h \in H\}$.

Proposition 2. Suppose N and H are two complementary subgroups of G. Then every $g \in G$ can be written uniquely as g = nh where $n \in N$ and $h \in H$.

Proof. It follows from the definition that every *g* can be written this way. For the uniqueness, suppose $n_1h_1 = n_2h_2$. Then $n_2^{-1}n_1 = h_2h_1^{-1}$. But $n_2^{-1}n_1 \in N$, $h_2h_1^{-1} \in H$, and $N \cap H = \{1\}$. So $n_1 = n_2$ and $h_1 = h_2$.

The additional assumption we need is that the normal subgroup $N \triangleleft G$ admits a complementary subgroup $H \subset G$. Note that H need not be a normal subgroup.

Example 3. There are many examples where complementary subgroups exist.

- (1) Let $G = S_n$ and $N = A_n$. Then $H = \{id, \tau\}$ is a complementary subgroup, where τ is any transposition.
- (2) Let $G = D_n$ and let N be the subgroup of rotations in D_n . Then $H = \{id, r\}$ is a complementary subgroup, where r is any reflection in G.
- (3) Let G = M be the group of all isometries of the plane and let N be the subgroup of translations. Then $H \cong O_2$ consisting of isometries fixing the origin is a complementary subgroup.
- (4) Let $G = G_1 \times G_2$ and $N = G_1 \times \{1\}$. Then $H = \{1\} \times G_2$ is a complementary subgroup.
- (5) Let $G = O_2$ and $N = SO_2$. Then $H = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$ is a complementary subgroup.
- (6) Let $G = O_3$ and $N = SO_3$. Then $H = \{I_3, -I_3\}$ is a complementary subgroup.

Example 4. There are also examples where a complementary subgroup does not exist.

- (1) Let $G = \mathbb{Z}_4$ and $N = \{[0], [2]\}$. Then *N* does not have a complementary subgroup.
- (2) Let G = Q be the quaternion group and $N = \{\pm 1\}$. Then *N* does not have a complementary subgroup.

Proposition 5. Let $N \triangleleft G$. Then a subgroup $H \subset G$ is complementary to N if and only if the quotient map $G \rightarrow G/N$ restricted to H gives an isomorphism $H \rightarrow G/N$.

Thus, we can think of the complementary subgroup *H* as a copy of G/N in *G*.

Proof. Since the kernel of $G \to G/N$ is N, the kernel of $H \to G/N$ is $N \cap H$. Hence $H \to G/N$ is injective if and only if $N \cap H = \{1\}$.

Next, the right coset Ng is the image of h under the quotient map if and only if Nh = Ng. In turn, Nh = Ng if and only if there is an $n \in N$ such that g = nh. Since elements of G/N are exactly the right cosets Ng, we conclude that $H \rightarrow G/N$ is surjective if and only if every $g \in G$ can be expressed as g = nh for some $n \in N$ and $h \in H$.

Combining the two, we get that $N \cap H = \{1\}$ and HN = G if and only if $H \to G/N$ is injective and surjective, that is, an isomorphism.

Example 6. Suppose $N \cong \mathbb{Z}_3$ and $H \cong \mathbb{Z}_2$. We find that there is more than one *G* that has *N* as its normal subgroup and *H* as its complementary subgroup:

(1)
$$G = \mathbb{Z}_6$$
, with $N = \{ [0], [2], [4] \}$ and $H = \{ [0], [3] \}$.

(2) $G = S_3$, with $N = A_3$ and $H = \{id, (12)\}$.

Example 6 shows that we need more information to identify G than just the information of N and H. What is this extra piece of information? I claim that this extra piece is a homomorphism

$$\phi \colon H \to \operatorname{Aut} N.$$

Where does this ϕ come from? Suppose we have a *G* with $N \triangleleft G$ and complementary *H*. Let $h \in H$ and $n \in N$. Since *N* is normal, we have $hnh^{-1} \in N$. Thus, the rule $n \mapsto hnh^{-1}$ defines a function $\phi_h \colon N \to N$. Observe that the function ϕ_h is an automorphism of the group *N*. Furthermore, we have $\phi_{h_1h_2} = \phi_{h_1} \circ \phi_{h_2}$. Indeed, for $n \in N$, we have

$$\phi_{h_1h_2}(n) = h_1h_2n(h_1h_2)^{-1} = h_1(h_2nh_2^{-1})h_1^{-1} = \phi_{h_1} \circ \phi_{h_2}(n).$$

Thus the rule $h \mapsto \phi_h$ defines a homomorphism (which we denote by ϕ) from *H* to Aut *N*, the group of automorphisms of *N*.

Given *N*, *H*, and ϕ : *H* \rightarrow Aut *N*, we can recover the group structure of *G*. To do so, we must describe how to multiply and take inverses in *G*. By Proposition 2 we can write elements of *G* uniquely as *nh*, for *n* \in *N* and *h* \in *H*. Then we have

$$n_1h_1 \cdot n_2h_2 = n_1h_1n_2h_1^{-1} \cdot h_1h_2 = n_1\phi_{h_1}(n_2) \cdot h_1h_2$$

We have thus recovered the multiplication rule for *G* from the multiplication rules in *N*, *H*, and the function ϕ . We can also recover the inverse

$$(nh)^{-1} = h^{-1}n^{-1} = h^{-1}n^{-1}h \cdot h^{-1} = \phi_h^{-1}(n^{-1}) \cdot h^{-1}.$$

So far, we saw that a group *G* with $N \triangleleft G$ and complementary *H* gives a homomorphism $\phi: H \rightarrow \text{Aut } N$ and this homomorphism, along with *N* and *H*, allows us to recover *G*. Suppose we now start with a group *N*, a group *H*, and a homomorphism $\phi: H \rightarrow \text{Aut } N$, can we construct a *G* which has $N \triangleleft G$ and a complementary *H* where conjugation on *N* by elements of *H* corresponds exatly to ϕ ? The answer is yes! We build *G* as follows. Let the elements of *G* be (n,h), where $n \in N$ and $h \in H$. Let the multiplication rule be

(1)
$$(n_1, h_1) \cdot (n_2, h_2) = (n_1 \phi_{h_1}(n_2), h_1 h_2).$$

Proposition 7. The above rule is associative, there is an identity, and every element has an inverse.

Proof. The proof is straightforward. You should not read it, but do it yourself. Let us check associativity:

$$((n_1, h_1) \cdot (n_2, h_2)) \cdot (n_3, h_3) = ((n_1\phi_{h_1}(n_2), h_1h_2))(n_3, h_3)$$

= $(n_1\phi_{h_1}(n_2)\phi_{h_1h_2}(n_3), h_1h_2h_3)$
= $(n_1\phi_{h_1}(n_2)\phi_{h_1} \circ \phi_{h_2}(n_3), h_1h_2h_3)$
= $(n_1\phi_{h_1}(n_2\phi_{h_2}(n_3)), h_1h_2h_3)$
= $(n_1, h_1) \cdot (n_2\phi_{h_2}(n_3), h_2h_3)$
= $(n_1, h_1) \cdot ((n_2, h_2) \cdot (n_3, h_3)).$

The identity is (1, 1), because

$$(n,h) \cdot (1,1) = (n\phi_h(1),h) = (n,h)$$

 $(1,1) \cdot (n,h) = (\phi_1(n),h) = (n,h).$

The inverse of (n, h) is $(\phi_h^{-1}(n^{-1}), h^{-1})$ because

$$(n,h) \cdot (\phi_h^{-1}(n^{-1}),h^{-1}) = (n\phi_h \circ \phi_h^{-1}(n^{-1}),hh^{-1}) = (1,1)$$

$$(\phi_h^{-1}(n^{-1}),h^{-1}) \cdot (n,h) = (\phi_h^{-1}(n^{-1})\phi_{h^{-1}}(n),h^{-1}h) = (1,1).$$

Definition 8. The group defined by the multiplication rule in Equation 1 is called the *semidirect product* of *N* and *H* via ϕ , and denoted by $N \rtimes_{\phi} H$.

Remark 9. Suppose the homomorphism ϕ : $H \rightarrow \text{Aut } N$ is trivial. Then $N \rtimes_{\phi} H$ is isomorphic to the direct product $N \times H$. Indeed, in this case the multiplication rule (Equation 1) becomes

$$(n_1, h_1) \cdot (n_2, h_2) = (n_1 n_2, h_1 h_2).$$

Note that the map $N \rtimes_{\phi} H \to H$ defined by $(n,h) \mapsto h$ is a homomorphism. Its kernel is $\{(n,1) \mid n \in N\}$, which is isomorphic to N. The set $\{(1,h) \mid h \in H\}$ forms a complementary subgroup. Thus, $N \rtimes_{\phi} H$ has a copy of N as a normal subgroup and a copy of H as a complementary subgroup. Finally, we check that in $N \rtimes_{\phi} H$, the homomorphism $\phi: H \to \operatorname{Aut} N$ comes from conjugation:

$$(1,h) \cdot (n,1) \cdot (1,h)^{-1} = (1,h) \cdot (n,1) \cdot (1,h^{-1}) = (\phi_h(n),h) \cdot (1,h^{-1}) = (\phi_h(n),1)$$

We can summarize the whole discussion in the following theorem.

Theorem 10. Let G be a group with a normal subgroup N and a complementary subgroup H. Conjugation by elements of H gives a homomorphism $\phi: H \to \text{Aut } N$ and we have an isomorphism $N \rtimes_{\phi} H \cong G$ defined by $(n, h) \mapsto nh$.

Conversely, given N, H, and a homomorphism ϕ : $H \rightarrow Aut N$, we can construct a group G with N as a normal subgroup and H as a complementary subgroup such that ϕ is given by conjugation by elements of H.

Example 11. Let us identify the ϕ in some of the examples from Example 3 and thus exhibit them as semidirect products.

(1) Let $G = D_n$, $N \cong C_n$, the subgroup of rotations, and $H = \{id, r\} \cong C_2$ be the complementary subgroup generated by a reflection r. Observe that $\phi_{id} = id$ and $\phi_r(x) = rxr^{-1} = x^{-1}$. Thus $\phi: C_2 \to \operatorname{Aut} C_n$ is the homomorphism that sends the generator of C_2 to the automorphism $x \mapsto x^{-1}$ of C_n . Thus we have

$$D_n \cong C_n \rtimes_{\phi} C_2.$$

(2) Let G = M, the group of isometries of the plane, $N = T \cong \mathbb{R}^2$, the subgroup of translations and $H \cong O_2$ be the complementary subgroup of isometries fixing the origin. Then $\phi_A(t_v) = At_vA^{-1} = t_{Av}$. Thus, $\phi: O_2 \to \operatorname{Aut} \mathbb{R}^2$ is simply the homomorphism that sends the matrix A to the automorphism of \mathbb{R}^2 defined by left multiplication by A. Thus we have

$$M \cong \mathbf{R}^n \rtimes_{\phi} O_2.$$

(3) Let $G = O_3$, $N = SO_3$, and $H = \{I, -I\} \cong \mathbb{Z}_2$. Note that conjugation by either *I* or -I is the identity operation, and thus the homomorphism $\phi \colon H \to \operatorname{Aut} N$ in this case is trivial. We thus get

$$O_3 \cong SO_3 \times \mathbb{Z}_2.$$

Example 12. Let us construct a group as a semidirect product. Let $N = \mathbb{Z}$, $H = \mathbb{Z}_2$ and let $\phi: H \to \operatorname{Aut} N$ be the homomorphism that sends [0] to the identity automorphism of N and [1] to the automorphism of N given by $n \mapsto -n$. We then get a group

$$G = \mathbf{Z} \rtimes_{\phi} \mathbf{Z}_2.$$

Note that *G* is not abelian. We have

$$(m, [0]) \cdot (n, [1]) = (m + \phi_{[0]}(n), [1]) = (m + n, [1]),$$

but

$$(n, [1]) \cdot (m, [0]) = (n + \phi_{[1]}(m), [1]) = (n - m, [1]).$$

In particular, *G* is not isomorphic to $\mathbf{Z} \times \mathbf{Z}_2$; it is something new!

We may wonder whether we have seen *G* before. Consider the group G' of isometries of the infinite pattern

 $\cdots T T T T T T T T T T \cdots$

Let N' be the normal subgroup of G' consisting of translations. Then $N' \cong \mathbb{Z}$. Let r be the reflection in a vertical line. Then $H' = \{id, r\}$ forms a subgroup complementary to N'. Denoting by t_n the translation by n, we see that

$$rt_nr^{-1}=t_{-n}.$$

Hence the homomorphism $H' \rightarrow \operatorname{Aut} N'$ given by conjugation corresponds exactly to the ϕ we had above. We thus realize that

$$G' \cong \mathbf{Z} \rtimes_{\phi} \mathbf{Z}_2.$$

REFERENCES

[2] Walter Neumann Notes on Semidirect Products, www.math.columbia.edu/~bayer/S09/ModernAlgebra/ semidirect.pdf

^[1] David Dummit and Richard Foote *Abstract Algebra*, 3E John Wiley & Sons 2004.