MODERN ALGEBRA 1: HOMEWORK 7

(1) Find an n for which \mathbf{Z}_{n}^{\times}is cyclic and one n for which it is not.

Caution. \mathbf{Z}_{n}^{\times}is not a subgroup of \mathbf{Z}_{n}^{+}. The operations are different.
(2) Draw two plane figures each of which has exactly 8 symmetries but such that their symmetry groups are not isomorphic.
(3) Chapter 6: 4.1
(4) Chapter 6: 4.3
(5) Chapter 6: 6.3 (You don't need to write justifications, but convince yourself, or better, your friend that your answer is right.)
(6) Let n be a positive integer. Define O_{n} and $S O_{n}$ by

$$
\begin{aligned}
O_{n} & =\text { Set of } n \times n \text { matrices } M \text { satisfying } M^{T} M
\end{aligned}=I, ~=S \text { and } \operatorname{det} M=1 .
$$

Show that O_{n} is a subgroup of $\mathrm{GL}_{n}(\mathbf{R})$ and $S O_{n}$ is a normal subgroup of O_{n}. What is the quotient $O_{n} / S O_{n}$?
(7) (a) Show that SO_{2} is just the group of rotation matrices

$$
S O_{2}=\left\{\left.\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \right\rvert\, \theta \in \mathbf{R}\right\} .
$$

(b) Show that O_{2} is given by

$$
O_{2}=S O_{2} \cup\left\{\left.\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right) \right\rvert\, \theta \in \mathbf{R}\right\} .
$$

What transformation does the matrix $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)$ describe?
(c) It true that $O_{2} \cong S O_{2} \times\{ \pm 1\}$?

