MODERN ALGEBRA 1: HOMEWORK 7

(1) Find an *n* for which \mathbf{Z}_n^{\times} is cyclic and one *n* for which it is not.

Caution. \mathbf{Z}_n^{\times} is *not* a subgroup of \mathbf{Z}_n^+ . The operations are different.

- (2) Draw two plane figures each of which has exactly 8 symmetries but such that their symmetry groups are not isomorphic.
- (3) Chapter 6: 4.1
- (4) Chapter 6: 4.3
- (5) Chapter 6: 6.3 (You don't need to write justifications, but convince yourself, or better, your friend that your answer is right.)
- (6) Let *n* be a positive integer. Define O_n and SO_n by

 O_n = Set of $n \times n$ matrices M satisfying $M^T M = I$

 SO_n = Set of $n \times n$ matrices M satisfying $M^T M = I$ and det M = 1.

Show that O_n is a subgroup of $GL_n(\mathbf{R})$ and SO_n is a normal subgroup of O_n . What is the quotient O_n/SO_n ?

(7) (a) Show that SO_2 is just the group of rotation matrices

$$SO_2 = \left\{ \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \mid \theta \in \mathbf{R} \right\}.$$

(b) Show that O_2 is given by

$$O_2 = SO_2 \cup \left\{ \begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{pmatrix} \mid \theta \in \mathbf{R} \right\}.$$

What transformation does the matrix $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ describe? (c) It true that $O_2 \cong SO_2 \times \{\pm 1\}$?