MODERN ALGEBRA 1: HOMEWORK 6

- (1) Chapter 2: 8.3
- (2) Chapter 2: 8.6
- (3) Chapter 2: 12.5
- (4) Let $H \subset G$ be a subgroup. The *normalizer* of H, denoted by N(H), is defined by

$$N(H) = \{ g \in G \mid gHg^{-1} = H \}.$$

- (a) Show that N(H) is a subgroup of *G* and N(H) = G if and only if $H \triangleleft G$.
- (b) Show that *H* is a normal subgroup of N(H).

Remark. Keep in mind that saying $gHg^{-1} = H$ is *not* the same as saying $ghg^{-1} = h$ for every $h \in H$. By $gHg^{-1} = H$ we mean that the collection $\{ghg^{-1}|h \in H\}$ as a whole is the same as the collection $\{h \mid h \in H\}$.

(5) Let $G = GL_2(\mathbf{R})$ and $H \subset G$ the subgroup of diagonal matrices, namely matrices of the form

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, \quad ab \neq 0.$$

Find N(H) and identify the quotient group N(H)/H. (Optional) Generalize the previous result to $GL_n(\mathbf{R})$.

- (6) Let Q = {±1, ±i, ±j, ±k} be the quaternion group from page 47 of the book. Find all homomorphisms from Z₂ to Q and from Z₄ to Q. Are there any nontrivial homomorphisms from Z₃ to Q?
- (7) Find all subgroups of *Q*. For a slick solution, proceed as follows.
 - (a) Show first that all nontrivial subgroups must contain $\{\pm 1\}$.
 - (b) Check that $\{\pm 1\} \triangleleft Q$. Identify the quotient $Q/\{\pm 1\}$ and use the correspondence theorem for subgroups.

Observe that all subgroups of *Q* are normal subgroups, although *Q* is not abelian!