MODERN ALGEBRA 1: HOMEWORK 3

(1) Chapter 2: 4.1
(2) In the following problem, G is a group. All small letters stand for elements of G.
(a) Show that $\langle x\rangle=\left\langle x^{-1}\right\rangle$. Conclude that x and x^{-1} have the same order.
(b) Show that x and $y x y^{-1}$ have the same order. Use this to show that $a b$ and $b a$ have the same order.
(c) Let H be a group and $\phi: G \rightarrow H$ an isomorphism. Show that x and $\phi(x)$ have the same order.
(3) Let G be a cyclic group of order n, and let $x \in G$ be a generator. Let $H \subset G$ be a subgroup. By considering the set $S \subset \mathbf{Z}$ defined by

$$
S=\left\{i \in \mathbf{Z} \mid x^{i} \in H\right\}
$$

solve the following.
(a) Show that $H=\left\langle x^{d}\right\rangle$ for some d that divides n. What is the order of H ?
(b) Let a be any integer (not necessarily dividing n). What is the order of x^{a} ?
(c) Conclude that all subgroups of G are cyclic, their order divides n, and moreover, for every divisor d of n, there is a unique subgroup of G of order d.
This is a step-by-step and expanded version of Chapter 2: 4.5.
Hint: Start by showing that S is a subgroup of \mathbf{Z}^{+}.
(4) A transposition is a permutation that switches two elements and fixes the others. In cycle notation, it corresponds to $(a b)$, where $a, b \in\{1, \ldots, n\}$ are distinct.
(a) Show that every permutation $p \in \mathbf{S}_{n}$ can be expressed as a product of transpositions. (Hint: Use induction on n).
(b) Give an example showing that such an expression is not unique.
(5) Chapter 2: 4.9
(6) Chapter 2: 4.10
(7) (a) Show that \mathbf{S}_{3} is not isomorphic to \mathbf{Z}_{6}.
(b) Show that \mathbf{Z}_{6} is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{3}$
(8) Chapter 2: 6.10 (a) or (b) - do whichever you like.

