MODERN ALGEBRA 1: HOMEWORK 3

- (1) Chapter 2: 4.1
- (2) In the following problem, *G* is a group. All small letters stand for elements of *G*.
 - (a) Show that $\langle x \rangle = \langle x^{-1} \rangle$. Conclude that *x* and x^{-1} have the same order.
 - (b) Show that x and yxy^{-1} have the same order. Use this to show that ab and ba have the same order.
 - (c) Let *H* be a group and $\phi \colon G \to H$ an isomorphism. Show that *x* and $\phi(x)$ have the same order.
- (3) Let *G* be a cyclic group of order *n*, and let $x \in G$ be a generator. Let $H \subset G$ be a subgroup. By considering the set $S \subset \mathbb{Z}$ defined by

$$S = \{i \in \mathbf{Z} \mid x^i \in H\},\$$

solve the following.

- (a) Show that $H = \langle x^d \rangle$ for some *d* that divides *n*. What is the order of *H*?
- (b) Let *a* be any integer (not necessarily dividing *n*). What is the order of x^a ?
- (c) Conclude that all subgroups of *G* are cyclic, their order divides *n*, and more-over, for every divisor *d* of *n*, there is a unique subgroup of *G* of order *d*. This is a step-by-step and expanded version of Chapter 2: 4.5. *Hint: Start by showing that S is a subgroup of* Z⁺.
- (4) A *transposition* is a permutation that switches two elements and fixes the others. In cycle notation, it corresponds to (ab), where $a, b \in \{1, ..., n\}$ are distinct.
 - (a) Show that every permutation $p \in S_n$ can be expressed as a product of transpositions. (*Hint: Use induction on n*).
 - (b) Give an example showing that such an expression is not unique.
- (5) Chapter 2: 4.9
- (6) Chapter 2: 4.10
- (7) (a) Show that S₃ is not isomorphic to Z₆.
 (b) Show that Z₆ is isomorphic to Z₂ × Z₃
- (8) Chapter 2: 6.10 (a) or (b) do whichever you like.